


GAN tradisional boleh ditafsirkan selepas pengubahsuaian, dan memastikan kebolehtafsiran kernel lilitan dan keaslian imej yang dihasilkan.
- Alamat kertas: https://www.aaai.org/AAAI22Papers/AAAI-7931.LiC.pdf
- Unit pengarang: Institut Teknologi Pengkomputeran, Akademi Sains China, Universiti Jiao Tong Shanghai, Makmal Zhijiang
Latar belakang penyelidikan dan tugasan penyelidikan
Generative Adversarial Rangkaian ( GAN) telah mencapai kejayaan besar dalam menjana imej beresolusi tinggi, dan penyelidikan tentang kebolehtafsiran mereka telah menarik perhatian meluas dalam beberapa tahun kebelakangan ini.
Dalam bidang ini, cara membuat GAN belajar representasi decoupled masih menjadi cabaran utama. Apa yang dipanggil perwakilan decoupled GAN bermakna setiap bahagian perwakilan hanya mempengaruhi aspek tertentu imej yang dihasilkan. Penyelidikan terdahulu mengenai perwakilan GAN yang dipisahkan memfokuskan pada perspektif yang berbeza.
Sebagai contoh, dalam Rajah 1 di bawah, Kaedah 1 memisahkan struktur dan gaya imej. Kaedah 2 mempelajari ciri-ciri objek tempatan dalam imej. Kaedah 3 mempelajari ciri yang dipisahkan bagi atribut dalam imej, seperti atribut umur dan atribut jantina bagi imej wajah. Walau bagaimanapun, kajian ini gagal memberikan gambaran yang jelas dan simbolik dalam GAN untuk konsep visual yang berbeza (seperti bahagian muka seperti mata, hidung dan mulut).
Rajah 1: Perbandingan visual dengan kaedah pencirian decoupled GAN yang lain
Untuk tujuan ini, penyelidik mencadangkan kaedah am untuk mengubah suai GAN tradisional kepada GAN yang boleh ditafsir, yang memastikan isirong lilitan dalam lapisan tengah penjana boleh mempelajari konsep visual tempatan yang dipisahkan. Khususnya, seperti yang ditunjukkan dalam Rajah 2 di bawah, berbanding dengan GAN tradisional, setiap kernel lilitan dalam lapisan tengah GAN yang boleh ditafsir sentiasa mewakili konsep visual tertentu apabila menghasilkan imej yang berbeza, dan kernel lilitan yang berbeza mewakili konsep yang berbeza.
Rajah 2: Perbandingan visual bagi GAN yang boleh ditafsir dan perwakilan pengekodan GAN tradisional
Kaedah pemodelan
Pembelajaran GAN yang boleh ditafsir harus memenuhi dua matlamat berikut: Kebolehtafsiran isirong lilitan dan Keaslian imej yang dijana.
- Kebolehtafsiran kernel lilitan: Penyelidik berharap kernel lilitan di lapisan tengah secara automatik boleh mempelajari konsep visual yang bermakna tanpa anotasi manual bagi sebarang konsep visual. Khususnya, setiap kernel lilitan harus menjana kawasan imej secara stabil yang sepadan dengan konsep visual yang sama apabila menjana imej yang berbeza. Kernel lilitan yang berbeza harus menghasilkan kawasan imej yang sepadan dengan konsep visual yang berbeza;
- Untuk memastikan kebolehtafsiran isirong lilitan dalam lapisan sasaran, para penyelidik menyedari bahawa apabila beberapa biji lilitan menghasilkan kawasan yang serupa yang sepadan dengan konsep visual tertentu, Mereka sering bersama-sama mewakili konsep visual ini.
Oleh itu, mereka menggunakan set kernel lilitan untuk bersama-sama mewakili konsep visual tertentu, dan menggunakan set kernel lilitan yang berbeza untuk mewakili konsep visual yang berbeza masing-masing.
Untuk memastikan ketulenan imej yang dijana pada masa yang sama, penyelidik mereka bentuk fungsi kehilangan berikut untuk mengubah suai GAN tradisional menjadi GAN yang boleh ditafsir.
- Kehilangan GAN tradisional: Kehilangan ini digunakan untuk memastikan keaslian imej yang dihasilkan; >
- Kehilangan partition kernel convolution: Diberi penjana, kehilangan ini digunakan untuk mencari cara untuk membahagikan kernel convolution supaya kernel convolution dalam kumpulan yang sama menghasilkan yang serupa kawasan imej. Secara khusus, mereka menggunakan model campuran Gaussian (GMM) untuk mempelajari cara biji lilitan dibahagikan untuk memastikan peta ciri isirong lilitan dalam setiap kumpulan mempunyai pengaktifan saraf yang serupa; 🎜> Kehilangan realisme model tenaga : Memandangkan cara inti lapisan sasaran dibahagikan, memaksa setiap kernel dalam kumpulan yang sama menjana konsep visual yang sama mungkin mengurangkan kualiti imej yang dijana . Untuk memastikan lagi ketulenan imej yang dijana, mereka menggunakan model tenaga untuk mengeluarkan kebarangkalian ketulenan peta ciri dalam lapisan sasaran, dan menggunakan anggaran kemungkinan maksimum untuk mempelajari parameter model tenaga; >
- Kehilangan kebolehtafsiran isirong lilitan: Memandangkan kaedah pembahagian kernel lilitan lapisan sasaran, kehilangan ini digunakan untuk meningkatkan lagi kebolehtafsiran kernel lilitan. Secara khusus, kehilangan ini menyebabkan setiap kernel lilitan dalam kumpulan yang sama menjana secara unik kawasan imej yang sama, manakala kernel lilitan dalam kumpulan berbeza bertanggungjawab untuk menghasilkan kawasan imej yang berbeza.
- Hasil eksperimenDalam eksperimen, penyelidik menilai GAN boleh ditafsir mereka secara kualitatif dan kuantitatif. Untuk
analisis kualitatif
, mereka memvisualisasikan peta ciri setiap kernel lilitan untuk menilai prestasi kernel lilitan pada imej yang berbeza. Ketekalan konsep visual yang diwakili. Seperti yang ditunjukkan dalam Rajah 3 di bawah, dalam GAN yang boleh ditafsir, setiap kernel lilitan sentiasa menghasilkan kawasan imej yang sepadan dengan konsep visual yang sama apabila menghasilkan imej yang berbeza, manakala kernel lilitan yang berbeza menjana kawasan imej yang sepadan dengan konsep visual yang berbeza.
Rajah 3: Visualisasi peta ciri dalam GAN boleh tafsir
Dalam eksperimen, perbezaan antara pusat kumpulan setiap kumpulan isirong lilitan dan medan penerimaan antara isirong lilitan turut dibandingkan, seperti ditunjukkan dalam Rajah 4(a) di bawah. Rajah 4(b) menunjukkan perkadaran bilangan biji lilitan sepadan dengan konsep visual yang berbeza dalam GAN yang boleh ditafsir. Rajah 4(c) menunjukkan bahawa apabila bilangan kumpulan kernel lilitan yang dipilih untuk pembahagian adalah berbeza, semakin banyak kumpulan, semakin terperinci konsep visual yang dipelajari oleh GAN yang boleh ditafsir.
Rajah 4: Penilaian kualitatif GAN yang boleh ditafsir
GAN yang boleh ditafsir juga menyokong pengubahsuaian konsep visual khusus pada imej yang dijana. Sebagai contoh, interaksi konsep visual khusus antara imej boleh dicapai dengan menukar peta ciri yang sepadan dalam lapisan boleh tafsir, iaitu pertukaran muka tempatan/global selesai.
Rajah 5 di bawah memberikan hasil pertukaran mulut, rambut dan hidung antara pasangan imej. Lajur terakhir memberikan perbezaan antara imej yang diubah suai dan imej asal. Keputusan ini menunjukkan kaedah pengkaji hanya mengubah suai konsep visual tempatan tanpa mengubah kawasan lain yang tidak berkaitan.
Rajah 5: Bertukar-tukar konsep visual khusus untuk menghasilkan imej
Selain itu, Rajah 6 di bawah juga menunjukkan kesan kaedah mereka apabila menukar seluruh muka .
Rajah 6: Menukar seluruh muka imej yang dijana Untuk analisis kuantitatif , penyelidik menggunakan eksperimen pengesahan muka untuk menilai ketepatan keputusan pertukaran muka. Khususnya, diberikan sepasang imej muka, muka imej asal digantikan dengan muka imej sumber untuk menghasilkan imej yang diubah suai. Kemudian, uji sama ada wajah dalam imej yang diubah suai dan wajah dalam imej sumber mempunyai identiti yang sama. Jadual 1 di bawah menunjukkan ketepatan hasil pengesahan muka kaedah yang berbeza Kaedah mereka adalah Lebih baik daripada kaedah pertukaran muka lain dari segi pemeliharaan identiti. Jadual 1: Penilaian ketepatan identiti bertukar muka Tambahan pula, lokaliti kaedah dalam mengubah suai konsep visual tertentu juga dinilai dalam eksperimen. Secara khusus, penyelidik mengira ralat min kuasa dua (MSE) antara imej asal dan imej yang diubah suai dalam ruang RGB, dan menggunakan nisbah MSE luar wilayah dan MSE dalam wilayah bagi konsep visual tertentu sebagai percubaan. indeks untuk penilaian lokaliti. Keputusan ditunjukkan dalam Jadual 2 di bawah Kaedah pengubahsuaian penyelidik mempunyai lokaliti yang lebih baik , iaitu Kawasan. daripada gambar di luar konsep visual yang diubah suai berubah kurang. Jadual 2: Penilaian lokaliti bagi konsep visual yang diubah suai Untuk lebih banyak hasil percubaan, lihat kertas kerja. Kerja ini mencadangkan kaedah umum yang boleh mengubah suai GAN tradisional kepada GAN yang boleh ditafsir tanpa sebarang anotasi manual konsep visual. Dalam GAN yang boleh ditafsir, setiap kernel lilitan di lapisan tengah penjana boleh menjana konsep visual yang sama secara stabil apabila menjana imej yang berbeza. Percubaan menunjukkan bahawa GAN boleh ditafsir juga membolehkan orang ramai mengubah suai konsep visual khusus pada imej yang dijana, memberikan perspektif baharu tentang kaedah pengeditan terkawal bagi imej yang dijana GAN. Ringkasan
Atas ialah kandungan terperinci GAN tradisional boleh ditafsirkan selepas pengubahsuaian, dan memastikan kebolehtafsiran kernel lilitan dan keaslian imej yang dihasilkan.. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Cecair memproses 7 juta rekod dan membuat peta interaktif dengan teknologi geospatial. Artikel ini meneroka cara memproses lebih dari 7 juta rekod menggunakan Laravel dan MySQL dan mengubahnya menjadi visualisasi peta interaktif. Keperluan Projek Cabaran Awal: Ekstrak Wawasan berharga menggunakan 7 juta rekod dalam pangkalan data MySQL. Ramai orang mula -mula mempertimbangkan bahasa pengaturcaraan, tetapi mengabaikan pangkalan data itu sendiri: Bolehkah ia memenuhi keperluan? Adakah penghijrahan data atau pelarasan struktur diperlukan? Bolehkah MySQL menahan beban data yang besar? Analisis awal: Penapis utama dan sifat perlu dikenalpasti. Selepas analisis, didapati bahawa hanya beberapa atribut yang berkaitan dengan penyelesaiannya. Kami mengesahkan kemungkinan penapis dan menetapkan beberapa sekatan untuk mengoptimumkan carian. Carian Peta Berdasarkan Bandar

Terdapat banyak sebab mengapa permulaan MySQL gagal, dan ia boleh didiagnosis dengan memeriksa log ralat. Penyebab umum termasuk konflik pelabuhan (periksa penghunian pelabuhan dan ubah suai konfigurasi), isu kebenaran (periksa keizinan pengguna yang menjalankan perkhidmatan), ralat fail konfigurasi (periksa tetapan parameter), rasuah direktori data (memulihkan data atau membina semula ruang meja), isu ruang jadual InnoDB (semak fail ibdata1) Apabila menyelesaikan masalah, anda harus menganalisisnya berdasarkan log ralat, cari punca utama masalah, dan mengembangkan tabiat sandaran data secara teratur untuk mencegah dan menyelesaikan masalah.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Jurutera Backend Senior Remote Company Kekosongan Syarikat: Lokasi Lokasi: Jauh Pejabat Jauh Jenis: Gaji sepenuh masa: $ 130,000- $ 140,000 Penerangan Pekerjaan Mengambil bahagian dalam penyelidikan dan pembangunan aplikasi mudah alih Circle dan ciri-ciri berkaitan API awam yang meliputi keseluruhan kitaran hayat pembangunan perisian. Tanggungjawab utama kerja pembangunan secara bebas berdasarkan rubyonrails dan bekerjasama dengan pasukan react/redux/relay front-end. Membina fungsi teras dan penambahbaikan untuk aplikasi web dan bekerjasama rapat dengan pereka dan kepimpinan sepanjang proses reka bentuk berfungsi. Menggalakkan proses pembangunan positif dan mengutamakan kelajuan lelaran. Memerlukan lebih daripada 6 tahun backend aplikasi web kompleks

MySQL boleh mengembalikan data JSON. Fungsi JSON_EXTRACT mengekstrak nilai medan. Untuk pertanyaan yang kompleks, pertimbangkan untuk menggunakan klausa WHERE untuk menapis data JSON, tetapi perhatikan kesan prestasinya. Sokongan MySQL untuk JSON sentiasa meningkat, dan disyorkan untuk memberi perhatian kepada versi dan ciri terkini.

Penjelasan terperinci mengenai atribut asid asid pangkalan data adalah satu set peraturan untuk memastikan kebolehpercayaan dan konsistensi urus niaga pangkalan data. Mereka menentukan bagaimana sistem pangkalan data mengendalikan urus niaga, dan memastikan integriti dan ketepatan data walaupun dalam hal kemalangan sistem, gangguan kuasa, atau pelbagai pengguna akses serentak. Gambaran keseluruhan atribut asid Atomicity: Transaksi dianggap sebagai unit yang tidak dapat dipisahkan. Mana -mana bahagian gagal, keseluruhan transaksi dilancarkan kembali, dan pangkalan data tidak mengekalkan sebarang perubahan. Sebagai contoh, jika pemindahan bank ditolak dari satu akaun tetapi tidak meningkat kepada yang lain, keseluruhan operasi dibatalkan. Begintransaction; UpdateAcCountSsetBalance = Balance-100Wh

Sebab utama kegagalan pemasangan MySQL adalah: 1. Isu kebenaran, anda perlu menjalankan sebagai pentadbir atau menggunakan perintah sudo; 2. Ketergantungan hilang, dan anda perlu memasang pakej pembangunan yang relevan; 3. Konflik pelabuhan, anda perlu menutup program yang menduduki port 3306 atau mengubah suai fail konfigurasi; 4. Pakej pemasangan adalah korup, anda perlu memuat turun dan mengesahkan integriti; 5. Pembolehubah persekitaran dikonfigurasikan dengan salah, dan pembolehubah persekitaran mesti dikonfigurasi dengan betul mengikut sistem operasi. Selesaikan masalah ini dan periksa dengan teliti setiap langkah untuk berjaya memasang MySQL.

Kunci utama MySQL tidak boleh kosong kerana kunci utama adalah atribut utama yang secara unik mengenal pasti setiap baris dalam pangkalan data. Jika kunci utama boleh kosong, rekod tidak dapat dikenal pasti secara unik, yang akan membawa kepada kekeliruan data. Apabila menggunakan lajur integer sendiri atau UUIDs sebagai kunci utama, anda harus mempertimbangkan faktor-faktor seperti kecekapan dan penghunian ruang dan memilih penyelesaian yang sesuai.
