Jadual Kandungan
1 Gunakan RPA dan NLP untuk mengurus perubahan kawal selia
2. Permudahkan pelaporan kawal selia
3. Memendekkan proses semakan bahan pemasaran
4. Kurangkan ralat dalam pemantauan transaksi
5. Menjalankan pemeriksaan latar belakang dan undang-undang
Rumah Peranti teknologi AI Lima cara untuk mengurangkan kos pematuhan dengan kecerdasan buatan dan automasi

Lima cara untuk mengurangkan kos pematuhan dengan kecerdasan buatan dan automasi

Apr 08, 2023 pm 04:41 PM
AI rpa Proses automatik

Lima cara untuk mengurangkan kos pematuhan dengan kecerdasan buatan dan automasi

Walaupun peraturan digubal untuk melindungi pengguna dan pasaran, peraturan ini selalunya rumit, mahal dan sukar untuk dipatuhi.

Industri yang dikawal selia tinggi seperti perkhidmatan kewangan dan sains hayat mesti menanggung kos pematuhan. Firma penyelidikan Deloitte menganggarkan bahawa kos pematuhan bank telah meningkat sebanyak 60% sejak krisis kewangan pada tahun 2008, dan Persatuan Pengurusan Risiko Antarabangsa mendapati bahawa 50% daripada institusi kewangan membelanjakan 6% hingga 10% daripada hasil mereka untuk pematuhan.

Kecerdasan buatan dan proses automatik pintar seperti automasi proses robotik (RPA) dan pemprosesan bahasa semula jadi (NLP) boleh membantu meningkatkan kecekapan dan mengurangkan kos untuk memenuhi pematuhan. Kaedahnya adalah seperti berikut:

1 Gunakan RPA dan NLP untuk mengurus perubahan kawal selia

Dalam satu tahun, institusi kewangan mungkin perlu menangani sebanyak 300 juta halaman peraturan baharu, yang mana terdiri daripada persekutuan, negeri atau majlis perbandaran AS melalui pelbagai saluran. Usaha manual untuk mengumpul, menyusun dan memahami perubahan ini dan memetakannya ke kawasan perniagaan yang sesuai memakan masa.

Walaupun RPA boleh diprogramkan untuk mengumpul perubahan kawal selia, terdapat juga keperluan untuk memahami peraturan dan menggunakannya dalam proses perniagaan. Di sinilah pengecaman aksara optik yang canggih, pemprosesan bahasa semula jadi dan model kecerdasan buatan dimainkan.

  • Pengecaman aksara optik boleh menukar teks kawal selia kepada teks yang boleh dibaca mesin.
  • Pemprosesan bahasa semula jadi digunakan untuk memproses teks dan memahami ayat kompleks dan istilah peraturan yang kompleks.
  • Seterusnya, model AI boleh memanfaatkan output untuk menyediakan pilihan bagi perubahan dasar berdasarkan kes masa lalu yang serupa, ditapis oleh peraturan baharu untuk membenderakan peraturan yang berkaitan dengan perniagaan.

Semua ciri ini boleh menjimatkan banyak masa penganalisis, sekali gus mengurangkan kos.

2. Permudahkan pelaporan kawal selia

Salah satu masa terbesar pengguna dalam pelaporan kawal selia ialah menentukan perkara yang perlu dilaporkan, bila dan bagaimana. Ini memerlukan penganalisis untuk bukan sahaja menyemak peraturan tetapi juga mentafsirnya, menulis teks tentang cara peraturan itu digunakan untuk perniagaan mereka dan menterjemahkannya ke dalam kod supaya data yang berkaitan boleh diambil semula.

Sebagai alternatif, AI boleh menghuraikan data kawal selia yang tidak berstruktur dengan cepat untuk mentakrifkan keperluan pelaporan, mentafsirnya berdasarkan peraturan dan keadaan lepas, dan menjana kod untuk mencetuskan proses automatik untuk mengakses berbilang sumber syarikat untuk membina Laporan. Pendekatan kepada perisikan kawal selia ini semakin mendapat daya tarikan untuk menyokong pelaporan perkhidmatan kewangan serta perniagaan berkaitan sains hayat yang perlu mengemukakan kelulusan produk baharu.

3. Memendekkan proses semakan bahan pemasaran

Proses penjualan di pasaran yang sangat dikawal selia memerlukan bahan pemasaran yang patuh. Walau bagaimanapun, proses meluluskan aliran berterusan bahan pemasaran baharu boleh membebankan.

Trend dalam kalangan syarikat farmaseutikal terhadap kandungan pemasaran yang diperibadikan meningkatkan kos pematuhan pada kadar eksponen kerana kakitangan pematuhan perlu memastikan setiap bahagian kandungan mematuhi pelabelan dan peraturan ubat. Memandangkan penambahan tenaga kerja pada skala dasar ini boleh meningkatkan kos dengan ketara, kecerdasan buatan kini digunakan untuk mengimbas kandungan dan menentukan pematuhan dengan lebih cepat dan lebih cekap. Dalam sesetengah kes, bot AI bahkan digunakan untuk mengedit dan menulis salinan pemasaran yang mematuhi peraturan.

4. Kurangkan ralat dalam pemantauan transaksi

Sistem pemantauan transaksi berasaskan peraturan tradisional dalam perkhidmatan kewangan cenderung untuk menghasilkan terlalu banyak positif palsu. Dalam sesetengah kes, kadar penggera palsu telah mencapai 90%, dan setiap makluman perlu disemak oleh kakitangan pematuhan.

Dengan menyepadukan kecerdasan buatan ke dalam sistem pemantauan transaksi tradisional, makluman pematuhan palsu boleh diminimumkan dan menyemak kos dikurangkan. Isu berisiko tinggi yang dianggap sah boleh ditingkatkan kepada kakitangan pematuhan, dan ini bukan isu yang boleh diselesaikan secara automatik. Memandangkan kakitangan pematuhan hanya mengendalikan transaksi yang dibenderakan berisiko tinggi, sumber ini boleh digunakan semula di mana mereka boleh menambah nilai. AI juga boleh digunakan untuk mengemas kini enjin peraturan tradisional dan sistem pemantauan apabila trend baharu dikenal pasti.

5. Menjalankan pemeriksaan latar belakang dan undang-undang

Untuk mengehadkan aktiviti jenayah dan pengubahan wang haram, bank perlu menjalankan usaha wajar untuk memastikan pelanggan baharu mematuhi undang-undang dan mengekalkan tingkah laku ini sepanjang perhubungan. Bergantung pada tahap risiko individu tertentu, semakan latar belakang mungkin mengambil masa antara 2 hingga 24 jam. Kebanyakan masa dihabiskan untuk mengumpul dokumen, menyemak pangkalan data dan menyemak media. Kecerdasan buatan dan automasi boleh menyelaraskan proses ini. Bot boleh digunakan untuk merangkak kandungan web dan menggunakan analisis sentimen untuk membenderakan kandungan negatif. Teknologi pemprosesan bahasa semula jadi boleh mengimbas dokumen mahkamah untuk tanda-tanda aktiviti haram dan laporan media yang paling berkaitan dengan analisis.

Atas ialah kandungan terperinci Lima cara untuk mengurangkan kos pematuhan dengan kecerdasan buatan dan automasi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Jun 28, 2024 am 03:51 AM

Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Jun 10, 2024 am 11:08 AM

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Jun 11, 2024 pm 03:57 PM

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Jun 07, 2024 am 10:06 AM

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. Aug 01, 2024 pm 09:40 PM

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas

See all articles