Jadual Kandungan
Apakah itu chatbot?
Bagaimanakah chatbot berfungsi?
Bot Sembang Berasaskan Peraturan
Chatbots berdasarkan kecerdasan buatan
Bot Sembang Kemungkinan
Deterministic Chatbot
Apakah seni bina chatbot?
Enjin Pemahaman Bahasa Asli
Pangkalan Pengetahuan
Storan Data
Apakah seni bina yang diperlukan untuk chatbot yang paling asas?
Bot sembang 2 Tahap adalah separuh -skrip dan menampilkan widget sembang langsung. Di sini anda boleh bersembang dengan pasukan sokongan pelanggan terus dari halaman utama.
Di sinilah penerbit (seperti antara muka sembang) menambahkan mesej pada baris gilir. Pelanggan mengakses bot sembang melalui platform pemesejan segera seperti WeChat, DingTalk, Enterprise WeChat dan QQ.
Platform ejen siaran langsung
Seni Bina Gred Perusahaan
Cara Chatbots Berfungsi
Pemadan Corak
Algoritma
Enjin Pemprosesan Bahasa Asli
Pertimbangan tambahan untuk seni bina gred perusahaan
Keselamatan
Ringkasan
Rumah Peranti teknologi AI Panduan untuk struktur chatbot

Panduan untuk struktur chatbot

Apr 08, 2023 pm 09:11 PM
AI chatbot

Saya menulis artikel "​​Cara mereka bentuk chatbots dengan lebih elegan​​" beberapa hari yang lalu Beberapa rakan meninggalkan mesej bertanya kepada saya: Stone, adakah anda mempunyai sebarang artikel tentang seni bina chatbots ? Di mana ada permintaan, di situ ada motivasi Hari ini kita akan bercakap tentang seni bina chatbots.

Kini, semakin banyak sistem perkhidmatan pelanggan perusahaan (dan sudah tentu sistem perniagaan lain) beralih daripada panggilan suara tradisional kepada teks, grafik dan suara pintar.

Panduan untuk struktur chatbot

Berkomunikasi melalui chatbots menjadi semakin popular kerana dua sebab utama: kesederhanaan dan masa nyata.

Di bawah, mari kita bincangkan tentang cara chatbots berfungsi, cara menyesuaikannya dan semua yang anda perlu tahu tentang seni bina chatbot.

Tetapi sebelum kita bermula, mari kita tutup perkara asas.

Apakah itu chatbot?

Bot sembang ialah program yang menyerupai perbualan antara orang dan komputer, atau antara orang. Apabila ditanya soalan, chatbot bertindak balas menggunakan pangkalan data pengetahuan.

Kecerdasan Buatan (AI) digunakan untuk mensimulasikan perbualan atau sembang bahasa semula jadi. Cara biasa adalah melalui platform pemesejan, aplikasi mudah alih atau panggilan telefon.

Chatbots membolehkan komunikasi antara manusia dan mesin, berfungsi secara bebas daripada bantuan manusia, dan menggunakan teknologi seperti pemprosesan bahasa semula jadi (NLP) untuk menjawab soalan. Pemprosesan bahasa semula jadi (NLP) ialah satu cabang kecerdasan buatan yang membolehkan komputer memahami teks dan bahasa pertuturan dengan cara yang sama seperti manusia.

Bagaimanakah chatbot berfungsi?

Chatbots membolehkan pengguna mencari jawapan kepada soalan dan permintaan soalan dengan mudah melalui teks, audio, imej dan banyak lagi tanpa campur tangan manusia.

Chatbot ialah penyelesaian automatik yang membolehkan perniagaan mengendalikan berbilang pertanyaan pelanggan secara serentak. Menurut beberapa statistik, kebanyakan perkhidmatan pelanggan benar-benar perlu tersedia 24*7 jam sehari.

Kini kebanyakan chatbot perusahaan telah menyepadukan lebih banyak peraturan dan teknologi bahasa semula jadi, dan model terkini boleh belajar secara berterusan semasa digunakan.

Bot sembang AI hari ini menggunakan alatan AI termaju untuk menjelaskan tujuan sebenar pelanggan.

Terdapat dua jenis chatbots utama, seperti yang ditunjukkan di bawah.

Bot Sembang Berasaskan Peraturan

Bot seperti ini hanya boleh memahami bilangan pilihan terhad yang telah diprogramkan dengannya. Mempunyai kelebihan berikut:

  • Mudah untuk dibina: Gunakan algoritma benar dan palsu untuk memahami pertanyaan pelanggan dan menghasilkan jawapan yang berkaitan.
  • Mudah untuk dilaksanakan: Tidak memerlukan kos pembelajaran yang tinggi dan mungkin boleh dilaksanakan dengan hanya kata kunci mudah atau ungkapan biasa.
  • Mudah dikawal: Peraturan ditetapkan oleh perusahaan itu sendiri, jadi jawapan output tidak akan melebihi julat yang ditetapkan.

Sudah tentu ada kelebihan, tetapi juga keburukan:

  • Kebergantungan yang kuat: terlalu bergantung pada peraturan, melebihi peraturan yang telah ditetapkan, tidak dapat memahami maksudnya
  • Operasi berasaskan menu: Semasa interaksi, chatbot memaparkan satu siri pilihan yang pengguna perlu pilih, yang menjadikannya sangat sukar untuk benar-benar memahami niat sebenar pengguna kerana ia mungkin tidak diwakili dalam pilihan.

Chatbots berdasarkan kecerdasan buatan

Chatbots ini agak kompleks dan menambah algoritma kecerdasan buatan kepada yang asal. Gunakan pemprosesan bahasa semula jadi (NLP) dan semantik untuk menjawab pertanyaan terbuka. Chatbot AI boleh mengecam bahasa, konteks dan niat serta bertindak balas dengan sewajarnya. ialah chatbot yang lebih kompleks.

Dalam ruang ini, kami telah menemui dua pendekatan berbeza:

Bot Sembang Kemungkinan

Bot jenis ini menggunakan pembelajaran mesin hujung ke hujung untuk mencipta model A berasaskan sejarah untuk log perbualan, bukannya melalui pengesanan niat atau mencari respons yang berkaitan dalam pangkalan pengetahuan. Walaupun mereka tidak mengikut skrip yang ditetapkan dan boleh berinteraksi secara semula jadi, kebarangkalian juga mempunyai kelemahan:

  • Sambil mereka belajar daripada pengalaman dan data dalam perbualan, banyak bias boleh diperkenalkan. Terdapat kawalan terhad ke atas dialog output, dan mungkin bot akan memberikan beberapa jawapan kontroversi dan menerima aduan daripada pelanggan.
  • Melaksanakan chatbot berkemungkinan memerlukan sejumlah besar data latihan Lebih banyak data diperoleh, lebih baik ketepatannya. Ini adalah kerja yang menyakitkan dan panjang untuk pembangun yang mengumpul data.
  • Jawapan yang dibuat oleh chatbot adalah dalam "kotak hitam" (model), yang bermaksud cara chatbot membuat jawapan. Tiada ketelusan, dan sukar untuk mengubah suai atau melaraskan keputusan inferens.

Deterministic Chatbot

Chatbot ini menggunakan pemprosesan bahasa semula jadi untuk mengira berat setiap perkataan, menganalisis konteks dan makna di belakangnya untuk mengeluarkan hasil atau jawapan.

Bot sembang ini dapat memadankan niat dengan jawapan berdasarkan makna.

Mereka mempunyai kelebihan dan kekurangan mereka:

  • Hanya keluarkan kandungan yang diisi oleh syarikat, menjadikannya lebih mudah untuk mengawal nada balasan dan imej korporat.
  • Ini tidak berdasarkan pembelajaran kebarangkalian dan boleh mendorong topik hangat baharu untuk dimasukkan.
  • Ikuti pepohon keputusan yang menentukan untuk membimbing pelanggan kepada hasil yang diingini. Pohon keputusan boleh menjadi sangat kompleks dan diawasi serta dikawal oleh jurulatih yang tidak akan menerima jawapan yang kontroversi dan tidak popular.
  • Apabila tiada kandungan yang berkaitan dalam pangkalan pengetahuan untuk bertindak balas kepada pengguna, jurulatih boleh melatih semula model atau merumuskan peraturan, sekali gus mencapai peralihan yang lancar dan mengurangkan kes asas.

Rakan yang sedang mempertimbangkan untuk memperkenalkan chatbot boleh belajar tentang seni bina chatbot, yang boleh menggabungkan semua kandungan bersama-sama. Sudah tentu, anda juga perlu menguasai ujian automatik.

Apakah seni bina chatbot?

Seni bina chatbot bergantung pada tujuannya

Tidak kira chatbot yang anda gunakan, proses komunikasi robot pada asasnya adalah sama.

Bahasa pengaturcaraan​​​boleh menggunakan Java, Python, PHP dan bahasa lain untuk mencipta bot yang bertindak balas kepada pertanyaan. Kebanyakan perbualan bermula dengan sapaan atau soalan dan kemudian membawa pengguna melalui satu siri soalan. untuk mendapatkan jawapan.

Seni bina asas chatbot diperkenalkan secara terperinci di bawah.

Enjin Pemahaman Bahasa Asli

Ini adalah teras dan langkah pertama yang paling penting. Pengguna memasukkan mesej dan NLU membaca mesej untuk memahami niat pengguna. Enjin peraturan kemudian mula mengira tindak balas terbaik.

Anda perlu meluangkan sedikit masa memikirkan perpustakaan koleksi QA anda, dan mengumpul perpustakaan QA secara logik dan kerap, anda juga perlu memahami strategi ujian QA.

Pangkalan Pengetahuan

Ini ialah asas maklumat tentang produk, perkhidmatan atau keperluan perniagaan. Ia boleh termasuk Soalan Lazim, panduan penyelesaian masalah, maklumat tentang perkhidmatan atau cara menjalankan perniagaan.

Kedua-dua pengetahuan dan pangkalan data menyediakan chatbot dengan maklumat yang diperlukan untuk bertindak balas secara berwibawa kepada pengguna.

Storan Data

Di sinilah analitis dan log perbualan disimpan. Memandangkan chatbots digunakan lebih lama, penyelesaian analisis yang lebih khusus dan lengkap perlu dibangunkan untuk menjadikan model lebih tepat dan meliputi lebih luas.

Pada setiap peringkat, perniagaan mesti disistemkan untuk memastikan chatbot disambungkan kepada perniagaan.

Apakah seni bina yang diperlukan untuk chatbot yang paling asas?

Perniagaan kecil dan kempen pemasaran selalunya bermula dengan chatbot tahap satu. Ini biasanya hanya boleh dibina pada satu platform. Kategori ini cemerlang dalam mengendalikan masalah mudah yang membentuk 70-80% daripada masalah biasa. Jenis chatbot ini menjawab soalan mudah, seperti "Pukul berapa anda akan buka?"

Apabila pengguna memerlukan maklumat yang lebih kompleks, seperti diagnosis masalah, chatbot perlu ditingkatkan.

Contohnya, jika seseorang bertanya: "Apa yang salah dengan penghantaran saya?"

Apabila keupayaan chatbots menjadi lebih pintar dan perniagaan yang boleh mereka kendalikan menjadi lebih kompleks, lebih banyak pendedahan trafik diperlukan

HTTP dan antara muka sembang

Bot sembang 2 Tahap adalah separuh -skrip dan menampilkan widget sembang langsung. Di sini anda boleh bersembang dengan pasukan sokongan pelanggan terus dari halaman utama.

Broker Mesej

Di sinilah penerbit (seperti antara muka sembang) menambahkan mesej pada baris gilir. Pelanggan mengakses bot sembang melalui platform pemesejan segera seperti WeChat, DingTalk, Enterprise WeChat dan QQ.

Platform ejen siaran langsung

Jika robot gagal mengenal pasti niat pengguna dengan betul, ejen manusia boleh campur tangan dengan lancar. Dalam sesetengah kes, mereka akan menyelesaikan isu tersebut dan menyerahkan pengakhiran perbualan kembali kepada bot.

Bot juga boleh memanggil butiran pelanggan daripada Pengurusan Perhubungan Pelanggan (CRM), seperti menukar kata laluan atau mencari pesanan.

Seni Bina Gred Perusahaan

Mengambil chatbot ke peringkat seterusnya memerlukan penggunaan teknologi untuk mendayakan perbualan yang rumit. Anda juga perlu menentukan cara untuk melanjutkan kefungsian perisian anda.

Sudah tentu, setiap perniagaan adalah berbeza. Berikut ialah ringkasan beberapa teknologi, aliran kerja dan corak biasa yang diperlukan untuk membina bot dengan seni bina gred perusahaan.

Terdapat banyak pertimbangan di luar fungsi teras. Penjadual ujian perisian mesti dibina ke dalam mana-mana chatbot pilihan.

Bot perbualan boleh dibahagikan kepada "otak" dan satu set keperluan atau "modul".

Cara Chatbots Berfungsi

Chatbots berfungsi menggunakan tiga kaedah pengelasan:

  • Padanan Corak
  • Algoritma
  • Rangkaian Neural

Pemadan Corak

Bot menggunakan padanan corak untuk menganalisis teks dan menjana respons yang sesuai. Struktur standard corak ini ialah Artificial Intelligence Markup Language (AIML), anda boleh merujuk kepada iFlytek "Spesifikasi Tatabahasa abnf "

Contohnya:

Qiao ·Siapa Biden? .

Bot sembang tahu jawapannya kerana namanya adalah sebahagian daripada corak yang berkaitan. Tetapi untuk mendapatkan maklumat lanjutan di luar corak yang berkaitan, chatbots boleh menggunakan algoritma.

Algoritma

Algoritma mengurangkan bilangan pengelas dan mencipta struktur yang lebih terurus. Dalam contoh berikut, setiap penggal diberikan markah.

Input: "Helo, selamat pagi."

Istilah: "hello" (tiada padanan)

Istilah: "baik" (kategori: salam)

Istilah: "Pagi" (Kategori: Ucapan)

Kategori: Ucapan (Skor = 2)

Dengan bantuan markah, seseorang boleh mencari padanan perkataan untuk ayat yang diberikan, Ini mengenal pasti kategori yang mempunyai tahap padanan tertinggi.

Enjin Pemprosesan Bahasa Asli

Enjin ini menggunakan sambungan berwajaran untuk mengira input dan output. Setiap langkah yang digunakan dalam data latihan mengubah suai pemberat untuk meningkatkan ketepatan. Ayat dipecahkan kepada perkataan individu, dan setiap perkataan kemudiannya digunakan sebagai input untuk memadankan kandungan pangkalan data rangkaian. Kemudian teruskan menguji kata-kata.

Pertimbangan tambahan untuk seni bina gred perusahaan

Selain itu, seni bina chatbot juga mesti mempertimbangkan elemen berikut.

Keselamatan

Keselamatan, tadbir urus dan perlindungan data harus dipandang serius. Ini amat penting untuk perniagaan yang menyimpan maklumat tentang berjuta-juta pelanggan.

Jika pengguna tidak mahu butiran peribadi mereka dibocorkan, mereka perlu mempertimbangkan cara untuk kekal tanpa nama. Jika anda ingin mengakses maklumat peribadi, anda perlu berbuat demikian dengan cara yang selamat.

Adalah penting untuk mewujudkan langkah kerahsiaan supaya tiada sesiapa pun boleh mendapat akses tanpa kebenaran kepada sistem sensitif.

Sebarang kesilapan kecil, seperti kesilapan menaip atau hiperpautan yang rosak, berpotensi untuk dilihat oleh beribu-ribu pengguna setiap bulan.

Kesilapan kecil boleh memberi kesan besar pada imej perniagaan anda.

Ringkasan

Chatbots memudahkan interaksi antara orang dan perkhidmatan, sekali gus meningkatkan pengalaman pelanggan. Mereka juga memberi peluang kepada perniagaan untuk menambah baik proses penglibatan semula sambil mengurangkan kos perkhidmatan pelanggan.

Atas ialah kandungan terperinci Panduan untuk struktur chatbot. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Jun 28, 2024 am 03:51 AM

Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Jun 10, 2024 am 11:08 AM

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Jun 11, 2024 pm 03:57 PM

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Jun 07, 2024 am 10:06 AM

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. Aug 01, 2024 pm 09:40 PM

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas

See all articles