


Berdasarkan pemindahan elemen rentas modal, kaedah pembahagian objek video rujukan Universiti Teknologi Meitu & Dalian hanya memerlukan satu peringkat
Pengenalan
Merujuk VOS (RVOS) ialah tugas yang baru muncul. Ia bertujuan untuk membahagikan objek yang dirujuk oleh teks daripada jujukan video berdasarkan teks rujukan. Berbanding dengan pembahagian objek video separa diselia, RVOS hanya bergantung pada perihalan bahasa abstrak dan bukannya topeng rujukan peringkat piksel, memberikan pilihan yang lebih mudah untuk interaksi manusia-komputer dan oleh itu telah mendapat perhatian yang meluas.
Pautan kertas: https://www.aaai.org/AAAI22Papers/AAAI-1100.LiD.pdf
Tujuan utama penyelidikan ini adalah untuk menyelesaikan dua cabaran utama yang dihadapi dalam tugasan RVOS sedia ada:
- Cara menukar maklumat teks ke dalam , gabungan mod silang maklumat gambar, untuk mengekalkan ketekalan skala antara dua modaliti dan menyepadukan sepenuhnya rujukan ciri berguna yang disediakan oleh teks ke dalam ciri gambar;
- Bagaimana untuk meninggalkan strategi dua peringkat kaedah sedia ada (iaitu, pertama mendapatkan hasil kasar bingkai demi bingkai pada tahap gambar, dan kemudian menggunakan keputusan sebagai rujukan untuk mendapatkan ramalan akhir melalui penghalusan struktur dengan maklumat pemasaan yang dipertingkatkan) dan menyatukan keseluruhan tugas RVOS ke dalam rangka kerja satu peringkat.
Sehubungan dengan itu, penyelidikan ini mencadangkan rangka kerja RVOS hujung ke hujung untuk migrasi elemen rentas mod - YOFO , sumbangan dan inovasi utamanya ialah:
- Dengan hanya penaakulan satu peringkat, adalah mungkin untuk mendapatkan pembahagian sasaran video secara langsung menggunakan teks rujukan maklumat Akibatnya, keputusan yang diperoleh pada dua set data arus perdana - Ref-DAVIS2017 dan Ref-Youtube-VOS mengatasi semua kaedah dua peringkat semasa
- mencadangkan pemindahan meta ( Meta; -Modul Pemindahan) untuk meningkatkan maklumat temporal, dengan itu mencapai lebih banyak pembelajaran ciri berfokuskan sasaran; modul, yang boleh menyepadukan sepenuhnya ciri-ciri berguna dalam bahasa dan gambar.
- Strategi pelaksanaan
Modul perlombongan ciri silang mod berbilang skala
: Modul ini melepasi tahap mengikut tahap Penggabungjalinan dua ciri ragam skala yang berbeza dapat mengekalkan ketekalan antara maklumat skala yang disampaikan oleh ciri imej dan ciri bahasa Lebih penting lagi, ia memastikan maklumat bahasa tidak akan dicairkan dan ditenggelami oleh maklumat imej berskala. semasa proses gabungan.
Modul Migrasi Meta
: Strategi pembelajaran untuk belajar diguna pakai, dan proses itu boleh digambarkan secara ringkas sebagai fungsi pemetaan berikut. Fungsi pemindahan ialah lilitan, kemudian ialah parameter kernel lilitannya:
Proses pengoptimuman boleh dinyatakan sebagai fungsi objektif berikut:
di mana, M mewakili Bank memori yang boleh menyimpan maklumat sejarah W mewakili berat kedudukan yang berbeza dan boleh memberi perhatian yang berbeza kepada kedudukan yang berbeza dalam ciri Y mewakili ciri bimodal setiap bingkai video yang disimpan dalam bank memori. Proses pengoptimuman ini memaksimumkan keupayaan fungsi pemindahan meta untuk membina semula ciri bimodal, dan juga membolehkan keseluruhan rangka kerja dilatih dari hujung ke hujung.
Latihan dan ujian: Fungsi kerugian yang digunakan dalam latihan ialah lovasz loss, dan set latihan ialah dua set data video Ref-DAVIS2017 , Ref-Youtube-VOS dan gunakan set data statik Ref-COCO untuk melakukan transformasi afin rawak untuk mensimulasikan data video sebagai latihan tambahan. Proses meta-migrasi dilakukan semasa latihan dan ramalan, dan keseluruhan rangkaian berjalan pada kelajuan 10FPS pada 1080ti.
Hasil eksperimen
Kaedah yang digunakan dalam kajian telah mencapai keputusan cemerlang pada dua set data RVOS arus perdana (Ref-DAVIS2017 dan Ref-Youtube-VOS). penunjuk dan beberapa pemaparan visualisasi adalah seperti berikut:
Rajah 3: Penunjuk kuantitatif pada dua set data arus perdana.
Rajah 4: Visualisasi pada set data VOS.
Rajah 5: Kesan visualisasi lain YOFO.
Kajian itu turut menjalankan satu siri eksperimen ablasi untuk menggambarkan keberkesanan modul perlombongan ciri (FM) dan modul pemindahan meta (MT).
Rajah 6: Keberkesanan modul perlombongan ciri (FM) dan modul pemindahan meta (MT).
Di samping itu, kajian memvisualisasikan ciri keluaran penyahkod dengan dan tanpa modul MT Ia boleh dilihat dengan jelas bahawa modul MT boleh menangkap kandungan yang diterangkan dalam bahasa dan menapis bunyi gangguan.
Rajah 7: Perbandingan ciri output penyahkod sebelum dan selepas menggunakan modul MT. Mengenai pasukan penyelidik
Kertas kerja ini dicadangkan bersama oleh penyelidik dari Institut Penyelidikan Pengimejan Meitu (MT Lab) dan pasukan Lu Huchuan dari Universiti Dalian daripada Teknologi. Institut Penyelidikan Pengimejan Meitu (MT Lab) ialah pasukan Meitu yang berdedikasi untuk penyelidikan algoritma, pembangunan kejuruteraan dan pengeluaran dalam bidang penglihatan komputer, pembelajaran mesin, realiti tambahan, pengkomputeran awan dan bidang lain Ia menyediakan asas untuk produk Meitu yang sedia ada dan akan datang. Ia menyediakan sokongan algoritma teras dan menggalakkan pembangunan produk Meitu melalui teknologi canggih Ia dikenali sebagai "Pusat Teknologi Meitu Ia telah mengambil bahagian dalam persidangan penglihatan komputer antarabangsa seperti CVPR, ICCV, dan ECCV, dan memenangi lebih banyak lagi. daripada sepuluh kejohanan dan naib juara.
Atas ialah kandungan terperinci Berdasarkan pemindahan elemen rentas modal, kaedah pembahagian objek video rujukan Universiti Teknologi Meitu & Dalian hanya memerlukan satu peringkat. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Menilai kos/prestasi sokongan komersial untuk rangka kerja Java melibatkan langkah-langkah berikut: Tentukan tahap jaminan yang diperlukan dan jaminan perjanjian tahap perkhidmatan (SLA). Pengalaman dan kepakaran pasukan sokongan penyelidikan. Pertimbangkan perkhidmatan tambahan seperti peningkatan, penyelesaian masalah dan pengoptimuman prestasi. Timbang kos sokongan perniagaan terhadap pengurangan risiko dan peningkatan kecekapan.

Keluk pembelajaran rangka kerja PHP bergantung pada kecekapan bahasa, kerumitan rangka kerja, kualiti dokumentasi dan sokongan komuniti. Keluk pembelajaran rangka kerja PHP adalah lebih tinggi jika dibandingkan dengan rangka kerja Python dan lebih rendah jika dibandingkan dengan rangka kerja Ruby. Berbanding dengan rangka kerja Java, rangka kerja PHP mempunyai keluk pembelajaran yang sederhana tetapi masa yang lebih singkat untuk bermula.

Rangka kerja PHP yang ringan meningkatkan prestasi aplikasi melalui saiz kecil dan penggunaan sumber yang rendah. Ciri-cirinya termasuk: saiz kecil, permulaan pantas, penggunaan memori yang rendah, kelajuan dan daya tindak balas yang dipertingkatkan, dan penggunaan sumber yang dikurangkan: SlimFramework mencipta API REST, hanya 500KB, responsif yang tinggi dan daya pemprosesan yang tinggi.

Mengikut penanda aras, untuk aplikasi kecil dan berprestasi tinggi, Quarkus (permulaan pantas, memori rendah) atau Micronaut (TechEmpower cemerlang) adalah pilihan yang ideal. SpringBoot sesuai untuk aplikasi bertindan penuh yang besar, tetapi mempunyai masa permulaan dan penggunaan memori yang lebih perlahan.

Menulis dokumentasi yang jelas dan komprehensif adalah penting untuk rangka kerja Golang. Amalan terbaik termasuk mengikut gaya dokumentasi yang ditetapkan, seperti Panduan Gaya Pengekodan Google. Gunakan struktur organisasi yang jelas, termasuk tajuk, subtajuk dan senarai, serta sediakan navigasi. Menyediakan maklumat yang komprehensif dan tepat, termasuk panduan permulaan, rujukan API dan konsep. Gunakan contoh kod untuk menggambarkan konsep dan penggunaan. Pastikan dokumentasi dikemas kini, jejak perubahan dan dokumen ciri baharu. Sediakan sokongan dan sumber komuniti seperti isu dan forum GitHub. Buat contoh praktikal, seperti dokumentasi API.

Pilih rangka kerja Go terbaik berdasarkan senario aplikasi: pertimbangkan jenis aplikasi, ciri bahasa, keperluan prestasi dan ekosistem. Rangka kerja Common Go: Gin (aplikasi Web), Echo (Perkhidmatan Web), Fiber (daya pemprosesan tinggi), gorm (ORM), fasthttp (kelajuan). Kes praktikal: membina REST API (Fiber) dan berinteraksi dengan pangkalan data (gorm). Pilih rangka kerja: pilih fasthttp untuk prestasi utama, Gin/Echo untuk aplikasi web yang fleksibel, dan gorm untuk interaksi pangkalan data.

Dalam pembangunan rangka kerja Go, cabaran biasa dan penyelesaiannya ialah: Pengendalian ralat: Gunakan pakej ralat untuk pengurusan dan gunakan perisian tengah untuk mengendalikan ralat secara berpusat. Pengesahan dan kebenaran: Sepadukan perpustakaan pihak ketiga dan cipta perisian tengah tersuai untuk menyemak bukti kelayakan. Pemprosesan serentak: Gunakan goroutine, mutex dan saluran untuk mengawal akses sumber. Ujian unit: Gunakan pakej, olok-olok dan stub untuk pengasingan dan alat liputan kod untuk memastikan kecukupan. Penerapan dan pemantauan: Gunakan bekas Docker untuk membungkus penggunaan, menyediakan sandaran data dan menjejak prestasi dan ralat dengan alat pengelogan dan pemantauan.

Terdapat lima salah faham dalam pembelajaran rangka kerja Go: terlalu bergantung pada rangka kerja dan fleksibiliti terhad. Jika anda tidak mengikut konvensyen rangka kerja, kod tersebut akan menjadi sukar untuk dikekalkan. Menggunakan perpustakaan lapuk boleh menyebabkan isu keselamatan dan keserasian. Penggunaan pakej yang berlebihan mengaburkan struktur kod. Mengabaikan pengendalian ralat membawa kepada tingkah laku yang tidak dijangka dan ranap sistem.
