Rumah > Peranti teknologi > AI > Bolehkah kecerdasan buatan membantu menghapuskan berat sebelah?

Bolehkah kecerdasan buatan membantu menghapuskan berat sebelah?

王林
Lepaskan: 2023-04-08 22:11:01
ke hadapan
1991 orang telah melayarinya

"Kami tidak melihat perkara itu apa adanya, kami hanya melihatnya mengikut cara kami melihatnya."

Bolehkah kecerdasan buatan membantu menghapuskan berat sebelah?

Dalam tetapan perniagaan, bias perkaitan, bias pengesahan, berat sebelah atribusi dan kesan halo, beberapa ralat penaakulan ini lebih dikenali dan benar-benar hanya muncul di permukaan. Secara kolektif, mereka meninggalkan jejak kesalahan dan kesilapan.

Sudah tentu, berat sebelah manusia yang paling berbahaya ialah yang memprejudiskan sesama manusia terhadap atau terhadap kita berdasarkan umur, bangsa, jantina, agama atau rupa. Walaupun usaha kita untuk membersihkan diri kita, persekitaran kerja kita, dan masyarakat kita daripada herotan ini, ia masih meresap ke dalam pemikiran dan tingkah laku kita, termasuk juga teknologi moden seperti kecerdasan buatan.

Pengkritik mengatakan AI semakin memburukkan berat sebelah

Sejak AI pertama kali digunakan dalam pengambilan, kelulusan pinjaman, pemodelan premium insurans, pengecaman muka, penguatkuasaan undang-undang dan pelbagai aplikasi lain Sejak itu, pengkritik telah menunjukkan (dengan justifikasi yang besar) kecenderungan bias teknologi.

Sebagai contoh, model bahasa baharu Google BERT (Bidirectional Encoder Representations from Transformers) ialah model pemprosesan bahasa semula jadi (NLP) terkemuka yang boleh digunakan oleh pembangun untuk membina AI mereka sendiri. BERT pada asalnya dibina menggunakan teks Wikipedia sebagai sumber utamanya. Adakah terdapat apa-apa yang salah dengan ini? Penyumbang Wikipedia adalah kebanyakannya lelaki kulit putih dari Eropah dan Amerika Utara. Akibatnya, salah satu sumber AI berasaskan bahasa yang paling penting datang dengan perspektif yang berat sebelah pada permulaannya.

Masalah yang sama telah ditemui dalam penglihatan komputer, satu lagi bidang utama pembangunan kecerdasan buatan. Set data pengecaman muka mengandungi ratusan ribu muka beranotasi, yang penting untuk membangunkan aplikasi pengecaman muka untuk keselamatan siber, penguatkuasaan undang-undang dan juga perkhidmatan pelanggan. Walau bagaimanapun, ternyata pembangun (mungkin kebanyakannya berkulit putih, lelaki pertengahan umur) secara tidak sedar lebih baik dalam mencapai ketepatan untuk orang seperti mereka. Wanita, kanak-kanak, orang dewasa yang lebih tua dan orang kulit berwarna mempunyai kadar ralat yang jauh lebih tinggi daripada lelaki kulit putih pertengahan umur. Akibatnya, IBM, Amazon dan Microsoft terpaksa berhenti menjual teknologi pengecaman wajah mereka kepada penguatkuasa undang-undang pada tahun 2020 atas kebimbangan bahawa berat sebelah boleh menyebabkan salah kenal pasti suspek.

Untuk mengetahui lebih lanjut, tonton dokumentari Coded Bias yang penting dan kadangkala menyeramkan.

Bagaimana jika AI sebenarnya adalah sebahagian daripada penyelesaian kepada berat sebelah

Walau bagaimanapun, pemahaman yang lebih baik tentang fenomena berat sebelah dalam AI menunjukkan bahawa AI hanya mendedahkan dan menguatkan perkara yang sudah wujud tetapi masih wujud? diabaikan atau Salah tanggapan terhadap berat sebelah tersirat. AI sendiri kebal terhadap warna, jantina, umur dan bias lain. Ia kurang terdedah kepada kesilapan logik dan bias kognitif yang melanda manusia. Satu-satunya sebab kita melihat bias dalam AI adalah kerana manusia kadangkala melatihnya dengan ralat heuristik dan data berat sebelah.

Sejak bias di atas ditemui, semua syarikat teknologi utama telah bekerja keras untuk menambah baik set data mereka dan menghapuskan berat sebelah. Satu cara untuk menghapuskan berat sebelah dalam AI? — Dengan menggunakan kecerdasan buatan, mari kita teruskan meneroka!

Menggunakan kecerdasan buatan untuk menghapuskan berat sebelah dalam pengambilan

Contoh klasik boleh didapati dalam peluang pekerjaan. Wanita dan orang kulit berwarna amat kurang diwakili di seluruh peluang pekerjaan yang paling diidamkan. Fenomena ini berterusan kerana pekerja baru menjadi pemimpin kanan yang bertanggungjawab untuk mengambil pekerja. Bias perkaitan memastikan bahawa "orang seperti saya" terus diambil bekerja, manakala berat sebelah atribusi mewajarkan pilihan tersebut berdasarkan prestasi pekerja lepas.

Tetapi itu mungkin berubah apabila kecerdasan buatan memainkan peranan yang lebih besar dalam merekrut. Alat seperti Textio, Dekoder Jantina dan Ongig menggunakan kecerdasan buatan untuk meneliti bias tersembunyi tentang jantina dan ciri lain. Knockri, Ceridian dan Gapjumpers menggunakan kecerdasan buatan untuk mengalih keluar atau mengabaikan ciri-ciri mengenal pasti seperti jantina, asal negara, warna kulit dan umur supaya pengurus yang mengupah boleh memberi tumpuan semata-mata pada kelayakan dan pengalaman calon. Sesetengah daripada penyelesaian ini juga mengurangkan bias kekinian, berat sebelah perkaitan dan berat sebelah jantina dalam proses temu duga dengan menilai secara objektif kemahiran insaniah calon atau menukar suara telefon calon untuk menutup jantina mereka.

Menggunakan kecerdasan buatan untuk menghapuskan berat sebelah dalam keputusan modal teroka

Pendekatan serupa boleh diambil dalam dunia modal teroka. Dalam dunia modal teroka, lelaki membentuk 80% daripada rakan kongsi, manakala wanita hanya menerima 2.2% daripada pelaburan, walaupun menjadi pengasas kepada 40% syarikat baharu. Contohnya, Founders Factory, pemecut permulaan British, telah menulis perisian untuk menapis calon program berdasarkan ciri-ciri kejayaan permulaan yang boleh dikenal pasti. Begitu juga, F4capital, sebuah organisasi bukan untung yang dikendalikan oleh wanita, membangunkan skor FICO untuk Startups untuk menilai kematangan, peluang dan risiko syarikat pemula untuk menghapuskan berat sebelah daripada proses membuat keputusan risiko. Pendekatan ini harus diterima pakai secara meluas, bukan sahaja kerana ia adalah perkara yang beretika, tetapi juga kerana ia memberikan pulangan yang lebih baik — 184% lebih tinggi daripada melabur tanpa bantuan AI.

Kesukaran mengurangkan bias kognitif kecerdasan buatan dalam perubatan

Kecerdasan buatan juga boleh membantu membuat keputusan yang lebih baik dalam penjagaan kesihatan. Sebagai contoh, syarikat diagnostik perubatan Flow Health sedang berusaha menggunakan kecerdasan buatan untuk mengatasi kecenderungan kognitif yang sering digunakan oleh doktor untuk mendiagnosis pesakit. Contohnya, "heuristik ketersediaan" menggalakkan doktor membuat diagnosis biasa tetapi kadangkala salah, manakala "heuristik berlabuh" menyebabkan mereka berpegang pada diagnosis awal yang salah walaupun maklumat baharu bercanggah dengannya. Saya percaya kecerdasan buatan akan menjadi bahagian penting dalam dunia perubatan diperibadikan dipacu data yang berkembang pesat.

Kawasan lain yang AI boleh mengurangkan berat sebelah biasa

AI malah boleh membantu mengurangkan berat sebelah yang kurang malignan, tetapi masih sangat kuat yang sering mengaburkan pertimbangan perniagaan kami. Fikirkan tentang berat sebelah (di negara berbahasa Inggeris) terhadap maklumat yang diterbitkan dalam bahasa Inggeris, berat sebelah dalam syarikat pemula terhadap orang yang lebih tua walaupun mereka mempunyai pengetahuan dan pengalaman yang lebih besar untuk menggunakan pembekal dan kaedah yang sama daripada Mencuba pendekatan baru, mungkin lebih baik; . Jangan lupa bahawa semasa masa ekonomi yang sukar, eksekutif rantaian bekalan dan pelabur Wall Street membuat keputusan jangka pendek berdasarkan emosi.

Memiliki AI memainkan peranan dalam semua bidang ini dengan berkesan boleh menyemak berat sebelah yang tidak diiktiraf dalam membuat keputusan.

AI malah boleh digunakan untuk mengurangkan berat sebelah dalam AI

Jika membuat kesilapan adalah fitrah manusia, AI mungkin penyelesaian yang kita perlukan untuk mengelakkan akibat berat sebelah tersembunyi kita Akibat yang mahal dan tidak beretika. Tetapi bagaimana pula dengan gangguan bias ini terhadap AI sendiri. Bagaimanakah AI boleh menjadi penyelesaian yang berguna jika ia salah membaca data berat sebelah dan menguatkan heuristik manusia yang berat sebelah

Kini terdapat alat yang direka untuk menghapuskan bias manusia dan data tersirat yang merayap? ke dalam AI. Alat What-If, yang dibangunkan oleh pasukan Penyelidikan Orang dan AI (PAIR) Google, membolehkan pembangun meneroka prestasi AI menggunakan perpustakaan luas "metrik kesaksamaan", manakala alat Penganalisis Bias PWC, alat AI Fairness 360 IBM Research, dan O 'Setiap alat LIME Reilly membantu kami mengenal pasti sama ada kecenderungan wujud dalam kod AI kami.

Jika anda seorang eksekutif kanan atau ahli lembaga mempertimbangkan cara AI boleh mengurangkan berat sebelah dalam organisasi anda, saya menggesa anda untuk menganggap AI sebagai senjata baharu yang menjanjikan dalam senjata anda, Daripada melihatnya sebagai ubat penawar yang menyelesaikan masalah sepenuhnya. Dari perspektif holistik dan praktikal, anda masih perlu menetapkan garis dasar untuk mengurangkan berat sebelah, melatih pekerja anda untuk mengenali dan mengelakkan berat sebelah tersembunyi dan mengumpul maklum balas luaran daripada pelanggan, pembekal atau perunding. Tinjauan bias bukan sahaja idea yang baik, dalam beberapa kes, malah ia adalah undang-undang.

Atas ialah kandungan terperinci Bolehkah kecerdasan buatan membantu menghapuskan berat sebelah?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
AI ai
sumber:51cto.com
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan