Rumah Peranti teknologi AI Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Apr 08, 2023 pm 10:11 PM
Pemanduan autonomi

Kertas arXiv "JPerceiver: Rangkaian Persepsi Bersama untuk Kedalaman, Pose dan Anggaran Susun Atur dalam Pemandangan Pemanduan", yang dimuat naik pada 22 Julai, melaporkan hasil kerja Profesor Tao Dacheng dari Universiti Sydney, Australia, dan Institut Penyelidikan JD Beijing .

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Anggaran kedalaman, visual odometri (VO) dan pandangan mata burung (BEV) anggaran susun atur pemandangan ialah tiga tugas utama untuk memacu persepsi pemandangan, yang merupakan kunci kepada gerakan secara autonomi pemanduan. Asas perancangan dan pelayaran. Walaupun saling melengkapi, mereka biasanya menumpukan pada tugasan yang berasingan dan jarang menangani ketiga-tiganya secara serentak.

Pendekatan mudah ialah melakukannya secara bebas secara berurutan atau selari, tetapi terdapat tiga kelemahan, iaitu 1) kedalaman dan keputusan VO dipengaruhi oleh masalah kekaburan skala yang wujud 2) susun atur BEV biasanya dilakukan menganggarkan jalan dan kenderaan secara bebas sambil mengabaikan perhubungan tindanan-dasar yang jelas 3) Walaupun peta kedalaman adalah petunjuk geometri yang berguna untuk membuat kesimpulan reka letak pemandangan, reka letak BEV sebenarnya diramalkan terus daripada imej pandangan hadapan tanpa menggunakan sebarang maklumat berkaitan kedalaman.

Kertas kerja ini mencadangkan rangka kerja persepsi bersama JPerceiver untuk menyelesaikan masalah ini dan pada masa yang sama menganggarkan kedalaman persepsi skala, reka letak VO dan BEV daripada jujukan video monokular. Gunakan transformasi geometri pandangan silang (CGT) untuk menyebarkan skala mutlak daripada susun atur jalan ke kedalaman dan VO mengikut kehilangan skala yang direka dengan teliti. Pada masa yang sama, modul cross-view and cross-modal transfer (CCT) direka bentuk untuk menggunakan petunjuk kedalaman untuk menaakul tentang susun atur jalan dan kenderaan melalui mekanisme perhatian.

JPerceiver dilatih dalam kaedah pembelajaran berbilang tugas hujung ke hujung, di mana kehilangan skala CGT dan modul CCT menggalakkan pemindahan pengetahuan antara tugas dan memudahkan pembelajaran ciri untuk setiap tugas.

Kod dan model boleh dimuat turun

https://github.com/sunnyHelen/JPerceiver.

Seperti yang ditunjukkan dalam rajah, JPerceiver terdiri daripada tiga rangkaian: kedalaman, sikap dan susun atur jalan, semuanya berdasarkan seni bina pengekod-penyahkod. Rangkaian kedalaman bertujuan untuk meramalkan peta kedalaman Dt bagi bingkai semasa Ia, di mana setiap nilai kedalaman mewakili jarak antara titik 3D dan kamera. Matlamat rangkaian pose adalah untuk meramalkan transformasi pose Tt→t+m antara bingkai semasa It dan bingkai bersebelahan It+m. Matlamat rangkaian susun atur jalan adalah untuk menganggarkan Lt susun atur BEV bagi rangka semasa, iaitu penghunian semantik jalan dan kenderaan dalam pesawat Cartesian pandangan atas. Tiga rangkaian tersebut dioptimumkan bersama semasa latihan.

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Dua rangkaian meramalkan kedalaman dan pose dioptimumkan secara bersama dengan kehilangan fotometrik dan kehilangan kelancaran dalam cara yang diselia sendiri. Di samping itu, kehilangan skala CGT juga direka untuk menyelesaikan masalah kekaburan skala kedalaman monokular dan anggaran VO.

Untuk mencapai persepsi persekitaran sedar skala, menggunakan maklumat skala dalam reka letak BEV, kehilangan skala CGT dicadangkan untuk anggaran kedalaman dan VO. Memandangkan susun atur BEV menunjukkan pekerjaan semantik dalam satah BEV Cartesian, ia meliputi julat Z meter di hadapan kenderaan dan (Z/2) meter ke kiri dan kanan masing-masing. Ia menyediakan medan jarak semula jadi z, jarak metrik zij bagi setiap piksel berbanding dengan kereta sendiri, seperti yang ditunjukkan dalam rajah:

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Andaikan satah BEV ialah tanah , asalnya hanya di bawah asal sistem koordinat kenderaan sendiri Berdasarkan parameter luaran kamera, satah BEV boleh ditayangkan ke kamera hadapan melalui transformasi homografi. Oleh itu, medan jarak BEV z boleh ditayangkan ke dalam kamera hadapan, seperti yang ditunjukkan dalam rajah di atas, dan digunakan untuk melaraskan kedalaman d yang diramalkan, dengan itu memperoleh kehilangan skala CGT:

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Untuk jalan raya Untuk anggaran susun atur, struktur rangkaian pengekod-penyahkod diguna pakai. Perlu diingat bahawa pengekod dikongsi digunakan sebagai pengekstrak ciri dan penyahkod yang berbeza untuk mempelajari reka letak BEV bagi kategori semantik yang berbeza secara serentak. Selain itu, modul CCT direka untuk meningkatkan interaksi ciri dan pemindahan pengetahuan antara tugas dan menyediakan maklumat geometri 3-D untuk penaakulan spatial BEV. Untuk menyelaraskan rangkaian susun atur jalan, pelbagai istilah kerugian digabungkan bersama untuk membentuk kehilangan hibrid dan mencapai kelas pengoptimuman seimbang yang berbeza.

CCT adalah untuk mengkaji korelasi antara ciri paparan hadapan Ff, ciri susun atur BEV Fb, ciri hadapan yang ditukar semula Ff′ dan ciri kedalaman hadapan FD, dan memperhalusi ciri susun atur dengan sewajarnya, seperti yang ditunjukkan dalam rajah Ditunjukkan : terbahagi kepada dua bahagian iaitu

CCT-CV dan CCT-CM modul cross-view dan modul cross-modal.

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Dalam CCT, Ff dan Fd diekstrak oleh pengekod cabang persepsi yang sepadan, manakala Fb diperoleh melalui unjuran pandangan MLP untuk menukar Ff kepada BEV, dan kehilangan kitaran mengekang MLP yang sama untuk menukarnya semula kepada Ff′ .

Dalam CCT-CV, mekanisme perhatian silang digunakan untuk menemui korespondensi geometri antara paparan hadapan dan ciri BEV, dan kemudian membimbing pemurnian maklumat pandangan hadapan dan bersedia untuk inferens BEV. Untuk menggunakan sepenuhnya ciri imej paparan hadapan, Fb dan Ff diunjurkan kepada tampalan: Qbi dan Kbi, sebagai pertanyaan dan kunci masing-masing.

Selain menggunakan ciri pandangan hadapan, CCT-CM juga digunakan untuk mengenakan maklumat geometri 3-D daripada Fd. Memandangkan Fd diekstrak daripada imej paparan hadapan, adalah munasabah untuk menggunakan Ff sebagai jambatan untuk mengurangkan jurang rentas modal dan mempelajari kesesuaian antara Fd dan Fb. Fd memainkan peranan Nilai, dengan itu memperoleh maklumat geometri 3-D yang berharga berkaitan dengan maklumat BEV dan meningkatkan lagi ketepatan anggaran susun atur jalan.

Dalam proses meneroka rangka kerja pembelajaran bersama untuk meramalkan susun atur yang berbeza secara serentak, terdapat perbezaan besar dalam ciri dan pengedaran kategori semantik yang berbeza. Untuk ciri, susun atur jalan dalam senario pemanduan biasanya perlu disambungkan, manakala sasaran kenderaan yang berbeza mesti dibahagikan.

Mengenai pengedaran, lebih banyak adegan jalan lurus diperhatikan daripada adegan berpusing, yang munasabah dalam set data sebenar. Perbezaan dan ketidakseimbangan ini meningkatkan kesukaran pembelajaran susun atur BEV, terutamanya meramalkan kategori yang berbeza secara bersama, kerana kehilangan entropi silang (CE) mudah atau kehilangan L1 gagal dalam kes ini. Beberapa kehilangan segmentasi, termasuk kehilangan CE berasaskan pengedaran, kehilangan IoU berasaskan wilayah dan kehilangan sempadan, digabungkan menjadi kerugian hibrid untuk meramalkan susun atur setiap kategori.

Keputusan percubaan adalah seperti berikut:

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama

Atas ialah kandungan terperinci Rangkaian persepsi untuk kedalaman, sikap dan anggaran jalan dalam senario pemanduan bersama. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Mengapakah Gaussian Splatting begitu popular dalam pemanduan autonomi sehingga NeRF mula ditinggalkan? Mengapakah Gaussian Splatting begitu popular dalam pemanduan autonomi sehingga NeRF mula ditinggalkan? Jan 17, 2024 pm 02:57 PM

Ditulis di atas & pemahaman peribadi pengarang Gaussiansplatting tiga dimensi (3DGS) ialah teknologi transformatif yang telah muncul dalam bidang medan sinaran eksplisit dan grafik komputer dalam beberapa tahun kebelakangan ini. Kaedah inovatif ini dicirikan oleh penggunaan berjuta-juta Gaussians 3D, yang sangat berbeza daripada kaedah medan sinaran saraf (NeRF), yang terutamanya menggunakan model berasaskan koordinat tersirat untuk memetakan koordinat spatial kepada nilai piksel. Dengan perwakilan adegan yang eksplisit dan algoritma pemaparan yang boleh dibezakan, 3DGS bukan sahaja menjamin keupayaan pemaparan masa nyata, tetapi juga memperkenalkan tahap kawalan dan pengeditan adegan yang tidak pernah berlaku sebelum ini. Ini meletakkan 3DGS sebagai penukar permainan yang berpotensi untuk pembinaan semula dan perwakilan 3D generasi akan datang. Untuk tujuan ini, kami menyediakan gambaran keseluruhan sistematik tentang perkembangan dan kebimbangan terkini dalam bidang 3DGS buat kali pertama.

Bagaimana untuk menyelesaikan masalah ekor panjang dalam senario pemanduan autonomi? Bagaimana untuk menyelesaikan masalah ekor panjang dalam senario pemanduan autonomi? Jun 02, 2024 pm 02:44 PM

Semalam semasa temu bual, saya telah ditanya sama ada saya telah membuat sebarang soalan berkaitan ekor panjang, jadi saya fikir saya akan memberikan ringkasan ringkas. Masalah ekor panjang pemanduan autonomi merujuk kepada kes tepi dalam kenderaan autonomi, iaitu, kemungkinan senario dengan kebarangkalian yang rendah untuk berlaku. Masalah ekor panjang yang dirasakan adalah salah satu sebab utama yang kini mengehadkan domain reka bentuk pengendalian kenderaan autonomi pintar satu kenderaan. Seni bina asas dan kebanyakan isu teknikal pemanduan autonomi telah diselesaikan, dan baki 5% masalah ekor panjang secara beransur-ansur menjadi kunci untuk menyekat pembangunan pemanduan autonomi. Masalah ini termasuk pelbagai senario yang berpecah-belah, situasi yang melampau dan tingkah laku manusia yang tidak dapat diramalkan. "Ekor panjang" senario tepi dalam pemanduan autonomi merujuk kepada kes tepi dalam kenderaan autonomi (AVs) kes Edge adalah senario yang mungkin dengan kebarangkalian yang rendah untuk berlaku. kejadian yang jarang berlaku ini

Pilih kamera atau lidar? Kajian terbaru tentang mencapai pengesanan objek 3D yang mantap Pilih kamera atau lidar? Kajian terbaru tentang mencapai pengesanan objek 3D yang mantap Jan 26, 2024 am 11:18 AM

0. Ditulis di hadapan&& Pemahaman peribadi bahawa sistem pemanduan autonomi bergantung pada persepsi lanjutan, membuat keputusan dan teknologi kawalan, dengan menggunakan pelbagai penderia (seperti kamera, lidar, radar, dll.) untuk melihat persekitaran sekeliling dan menggunakan algoritma dan model untuk analisis masa nyata dan membuat keputusan. Ini membolehkan kenderaan mengenali papan tanda jalan, mengesan dan menjejaki kenderaan lain, meramalkan tingkah laku pejalan kaki, dsb., dengan itu selamat beroperasi dan menyesuaikan diri dengan persekitaran trafik yang kompleks. Teknologi ini kini menarik perhatian meluas dan dianggap sebagai kawasan pembangunan penting dalam pengangkutan masa depan satu. Tetapi apa yang menyukarkan pemanduan autonomi ialah memikirkan cara membuat kereta itu memahami perkara yang berlaku di sekelilingnya. Ini memerlukan algoritma pengesanan objek tiga dimensi dalam sistem pemanduan autonomi boleh melihat dan menerangkan dengan tepat objek dalam persekitaran sekeliling, termasuk lokasinya,

Adakah anda benar-benar menguasai penukaran sistem koordinat? Isu berbilang sensor yang tidak dapat dipisahkan daripada pemanduan autonomi Adakah anda benar-benar menguasai penukaran sistem koordinat? Isu berbilang sensor yang tidak dapat dipisahkan daripada pemanduan autonomi Oct 12, 2023 am 11:21 AM

Artikel perintis dan utama pertama terutamanya memperkenalkan beberapa sistem koordinat yang biasa digunakan dalam teknologi pemanduan autonomi, dan cara melengkapkan korelasi dan penukaran antara mereka, dan akhirnya membina model persekitaran bersatu. Fokus di sini adalah untuk memahami penukaran daripada kenderaan kepada badan tegar kamera (parameter luaran), penukaran kamera kepada imej (parameter dalaman) dan penukaran unit imej kepada piksel. Penukaran daripada 3D kepada 2D akan mempunyai herotan, terjemahan, dsb. Perkara utama: Sistem koordinat kenderaan dan sistem koordinat badan kamera perlu ditulis semula: sistem koordinat satah dan sistem koordinat piksel Kesukaran: herotan imej mesti dipertimbangkan Kedua-dua penyahherotan dan penambahan herotan diberi pampasan pada satah imej. 2. Pengenalan Terdapat empat sistem penglihatan secara keseluruhannya: sistem koordinat satah piksel (u, v), sistem koordinat imej (x, y), sistem koordinat kamera () dan sistem koordinat dunia (). Terdapat hubungan antara setiap sistem koordinat,

Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Feb 28, 2024 pm 07:20 PM

Ramalan trajektori memainkan peranan penting dalam pemanduan autonomi Ramalan trajektori pemanduan autonomi merujuk kepada meramalkan trajektori pemanduan masa hadapan kenderaan dengan menganalisis pelbagai data semasa proses pemanduan kenderaan. Sebagai modul teras pemanduan autonomi, kualiti ramalan trajektori adalah penting untuk kawalan perancangan hiliran. Tugas ramalan trajektori mempunyai timbunan teknologi yang kaya dan memerlukan kebiasaan dengan persepsi dinamik/statik pemanduan autonomi, peta ketepatan tinggi, garisan lorong, kemahiran seni bina rangkaian saraf (CNN&GNN&Transformer), dll. Sangat sukar untuk bermula! Ramai peminat berharap untuk memulakan ramalan trajektori secepat mungkin dan mengelakkan perangkap Hari ini saya akan mengambil kira beberapa masalah biasa dan kaedah pembelajaran pengenalan untuk ramalan trajektori! Pengetahuan berkaitan pengenalan 1. Adakah kertas pratonton teratur? A: Tengok survey dulu, hlm

SIMPL: Penanda aras ramalan gerakan berbilang ejen yang mudah dan cekap untuk pemanduan autonomi SIMPL: Penanda aras ramalan gerakan berbilang ejen yang mudah dan cekap untuk pemanduan autonomi Feb 20, 2024 am 11:48 AM

Tajuk asal: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving Paper pautan: https://arxiv.org/pdf/2402.02519.pdf Pautan kod: https://github.com/HKUST-Aerial-Robotics/SIMPL Unit pengarang: Universiti Sains Hong Kong dan Teknologi Idea Kertas DJI: Kertas kerja ini mencadangkan garis dasar ramalan pergerakan (SIMPL) yang mudah dan cekap untuk kenderaan autonomi. Berbanding dengan agen-sen tradisional

SOTA terbaharu nuScenes |. SparseAD: Pertanyaan jarang membantu pemanduan autonomi hujung ke hujung yang cekap! SOTA terbaharu nuScenes |. SparseAD: Pertanyaan jarang membantu pemanduan autonomi hujung ke hujung yang cekap! Apr 17, 2024 pm 06:22 PM

Ditulis di hadapan & titik permulaan Paradigma hujung ke hujung menggunakan rangka kerja bersatu untuk mencapai pelbagai tugas dalam sistem pemanduan autonomi. Walaupun kesederhanaan dan kejelasan paradigma ini, prestasi kaedah pemanduan autonomi hujung ke hujung pada subtugas masih jauh ketinggalan berbanding kaedah tugasan tunggal. Pada masa yang sama, ciri pandangan mata burung (BEV) padat yang digunakan secara meluas dalam kaedah hujung ke hujung sebelum ini menyukarkan untuk membuat skala kepada lebih banyak modaliti atau tugasan. Paradigma pemanduan autonomi hujung ke hujung (SparseAD) tertumpu carian jarang dicadangkan di sini, di mana carian jarang mewakili sepenuhnya keseluruhan senario pemanduan, termasuk ruang, masa dan tugas, tanpa sebarang perwakilan BEV yang padat. Khususnya, seni bina jarang bersatu direka bentuk untuk kesedaran tugas termasuk pengesanan, penjejakan dan pemetaan dalam talian. Di samping itu, berat

Mari kita bincangkan tentang sistem pemanduan autonomi hujung ke hujung dan generasi seterusnya, serta beberapa salah faham tentang pemanduan autonomi hujung ke hujung? Mari kita bincangkan tentang sistem pemanduan autonomi hujung ke hujung dan generasi seterusnya, serta beberapa salah faham tentang pemanduan autonomi hujung ke hujung? Apr 15, 2024 pm 04:13 PM

Pada bulan lalu, atas sebab-sebab yang diketahui umum, saya telah mengadakan pertukaran yang sangat intensif dengan pelbagai guru dan rakan sekelas dalam industri. Topik yang tidak dapat dielakkan dalam pertukaran secara semula jadi adalah hujung ke hujung dan Tesla FSDV12 yang popular. Saya ingin mengambil kesempatan ini untuk menyelesaikan beberapa buah fikiran dan pendapat saya pada masa ini untuk rujukan dan perbincangan anda. Bagaimana untuk mentakrifkan sistem pemanduan autonomi hujung ke hujung, dan apakah masalah yang sepatutnya dijangka diselesaikan hujung ke hujung? Menurut definisi yang paling tradisional, sistem hujung ke hujung merujuk kepada sistem yang memasukkan maklumat mentah daripada penderia dan secara langsung mengeluarkan pembolehubah yang membimbangkan tugas. Sebagai contoh, dalam pengecaman imej, CNN boleh dipanggil hujung-ke-hujung berbanding kaedah pengekstrak ciri + pengelas tradisional. Dalam tugas pemanduan autonomi, masukkan data daripada pelbagai penderia (kamera/LiDAR

See all articles