Jadual Kandungan
Apakah pembelajaran beberapa pukulan?
Variasi dalam sampel kecil
Kaedah pembelajaran sampel kecil
Pendekatan Tahap Data (DLA)
Pendekatan Tahap Parameter (PLA)
Algoritma pengelasan imej pembelajaran sampel kecil
Pembelajaran meta bebas model Model-Pembelajaran Meta Agnostik
Rangkaian Padanan
Rangkaian Prototaip
Rangkaian Perhubungan Rangkaian Perhubungan
Menggunakan Open-AI Clip untuk pembelajaran sifar pukulan
Rumah Peranti teknologi AI Klasifikasi imej dengan pembelajaran beberapa tangkapan menggunakan PyTorch

Klasifikasi imej dengan pembelajaran beberapa tangkapan menggunakan PyTorch

Apr 09, 2023 am 10:51 AM
pembelajaran mesin Set data pembelajaran sampel kecil

Dalam beberapa tahun kebelakangan ini, model berasaskan pembelajaran mendalam telah menunjukkan prestasi yang baik dalam tugas seperti pengesanan objek dan pengecaman imej. Mengenai set data klasifikasi imej yang mencabar seperti ImageNet, yang mengandungi 1,000 klasifikasi objek berbeza, sesetengah model kini melebihi tahap manusia. Tetapi model ini bergantung pada proses latihan yang diawasi, mereka dipengaruhi dengan ketara oleh ketersediaan data latihan berlabel, dan kelas yang model dapat mengesan adalah terhad kepada kelas yang dilatih.

Memandangkan imej berlabel tidak mencukupi untuk semua kelas semasa latihan, model ini mungkin kurang berguna dalam tetapan dunia sebenar. Dan kami mahu model itu dapat mengenali kelas yang tidak pernah dilihat semasa latihan, kerana hampir mustahil untuk melatih imej semua objek berpotensi. Masalah di mana kita akan belajar daripada beberapa sampel dipanggil pembelajaran Few-Shot.

Apakah pembelajaran beberapa pukulan?

Klasifikasi imej dengan pembelajaran beberapa tangkapan menggunakan PyTorch

Pembelajaran beberapa pukulan ialah subbidang pembelajaran mesin. Ia melibatkan pengkelasan data baharu dengan hanya beberapa sampel latihan dan data penyeliaan. Model yang kami cipta berfungsi dengan baik dengan hanya sebilangan kecil sampel latihan.

Pertimbangkan senario berikut: Dalam bidang perubatan, untuk beberapa penyakit luar biasa, mungkin tidak ada imej x-ray yang mencukupi untuk latihan. Untuk senario sedemikian, membina pengelas pembelajaran beberapa pukulan adalah penyelesaian yang sempurna.

Variasi dalam sampel kecil

Secara amnya, penyelidik mengenal pasti empat jenis:

  1. N-Shot Learning (NSL)
  2. Few-Shot Learning ( FSL)
  3. Pembelajaran Satu Pukulan (OSL)
  4. Pembelajaran Sifar Pukulan (ZSL)

Apabila kita bercakap tentang FSL, kita biasanya merujuk kepada N- klasifikasi cara-K-Shot. N mewakili bilangan kelas, dan K mewakili bilangan sampel yang akan dilatih dalam setiap kelas. Jadi Pembelajaran N-Shot dianggap sebagai konsep yang lebih luas daripada semua konsep lain. Boleh dikatakan Few-Shot, One-Shot dan Zero-Shot adalah sub-bidang NSL. Manakala pembelajaran zero-shot bertujuan untuk mengklasifikasikan kelas ghaib tanpa sebarang contoh latihan.

Dalam One-Shot Learning, hanya terdapat satu sampel bagi setiap kelas. Few-Shot mempunyai 2 hingga 5 sampel setiap kelas, yang bermaksud Few-Shot ialah versi One-Shot Learning yang lebih fleksibel.

Kaedah pembelajaran sampel kecil

Secara amnya, dua kaedah harus dipertimbangkan semasa menyelesaikan masalah Few Shot Learning:

Pendekatan Tahap Data (DLA)

Ini Strateginya adalah sangat mudah, jika tidak ada data yang mencukupi untuk mencipta model yang kukuh dan mengelakkan kekurangan dan overfitting, maka lebih banyak data harus ditambah. Oleh sebab itu, banyak masalah FSL boleh diselesaikan dengan memanfaatkan lebih banyak data daripada set data asas yang lebih besar. Ciri yang ketara bagi set data asas ialah ia tidak mempunyai kelas yang membentuk set sokongan kami untuk cabaran Few-Shot. Sebagai contoh, jika kita ingin mengklasifikasikan spesies burung tertentu, set data asas mungkin mengandungi gambar banyak burung lain.

Pendekatan Tahap Parameter (PLA)

Dari sudut perspektif tahap parameter, sampel Few-Shot Learning agak mudah untuk dilebihkan kerana ia biasanya mempunyai ruang dimensi tinggi yang besar. Mengehadkan ruang parameter, menggunakan regularisasi dan menggunakan fungsi kehilangan yang sesuai akan membantu menyelesaikan masalah ini. Sebilangan kecil sampel latihan akan digunakan oleh model untuk membuat generalisasi.

Prestasi boleh dipertingkatkan dengan membimbing model ke ruang parameter yang luas. Kaedah pengoptimuman biasa mungkin tidak menghasilkan keputusan yang tepat kerana kekurangan data latihan.

Atas sebab di atas, melatih model kami untuk mencari laluan terbaik melalui ruang parameter menghasilkan hasil ramalan yang terbaik. Pendekatan ini dipanggil meta-pembelajaran.

Algoritma pengelasan imej pembelajaran sampel kecil

Terdapat 4 kaedah pembelajaran sampel kecil yang biasa:

Pembelajaran meta bebas model Model-Pembelajaran Meta Agnostik

Prinsip meta-pembelajaran berasaskan kecerunan (GBML) ialah asas MAML. Dalam GBML, pelajar meta memperoleh pengalaman terdahulu dengan melatih model asas dan mempelajari ciri yang dikongsi merentas semua perwakilan tugas. Setiap kali terdapat tugasan baharu untuk dipelajari, pelajar meta diperhalusi menggunakan pengalaman sedia ada dan jumlah minimum data latihan baharu yang disediakan oleh tugasan baharu itu.

Secara amnya, jika kita memulakan parameter secara rawak dan mengemas kininya beberapa kali, algoritma tidak akan menumpu kepada prestasi yang baik. MAML cuba menyelesaikan masalah ini. MAML menyediakan permulaan yang boleh dipercayai bagi pelajar meta-parameter dengan hanya beberapa langkah kecerunan dan tanpa pemasangan berlebihan, supaya tugasan baharu boleh dipelajari secara optimum dan cepat.

Langkah-langkahnya adalah seperti berikut:

  1. Pelajar meta mencipta salinan C sendiri pada permulaan setiap episod dan
  2. C dilatih pada episod ini (dengan bantuan model asas),
  3. C membuat ramalan pada set pertanyaan,
  4. kerugian yang dikira daripada ramalan ini digunakan untuk mengemas kini C,
  5. seperti Ini berterusan sehingga semua episod latihan selesai.

Klasifikasi imej dengan pembelajaran beberapa tangkapan menggunakan PyTorch

Kelebihan terbesar teknik ini ialah ia dianggap bebas daripada pilihan algoritma meta-pembelajaran. Oleh itu, kaedah MAML digunakan secara meluas dalam banyak algoritma pembelajaran mesin yang memerlukan penyesuaian pantas, terutamanya rangkaian neural dalam.

Rangkaian Padanan

Kaedah pembelajaran metrik pertama yang dicipta untuk menyelesaikan masalah FSL ialah Rangkaian Padanan (MN).

Set data asas yang besar diperlukan apabila menggunakan kaedah rangkaian padanan untuk menyelesaikan masalah Pembelajaran Sedikit Tangkapan. .

Selepas membahagikan set data ini kepada beberapa episod, untuk setiap episod, rangkaian yang sepadan melakukan perkara berikut:

  • Setiap imej daripada set sokongan dan set pertanyaan disalurkan kepada CNN yang mengeluarkan pembenaman ciri untuk mereka
  • imej pertanyaan menggunakan model yang dilatih pada set sokongan untuk mendapatkan jarak kosinus ciri terbenam, diklasifikasikan oleh softmax
  • kehilangan silang entropi hasil pengelasan oleh Kemas kini propagasi belakang CNN menampilkan model benam

Rangkaian padanan boleh belajar membina benam imej dengan cara ini. MN dapat mengklasifikasikan foto menggunakan kaedah ini tanpa pengetahuan khusus tentang kategori tersebut. Ia hanya membandingkan beberapa contoh kelas.

Memandangkan kategori berbeza dari episod ke episod, rangkaian yang sepadan mengira atribut imej (ciri) yang penting untuk perbezaan kategori. Apabila menggunakan pengelasan standard, algoritma memilih ciri yang unik untuk setiap kategori.

Rangkaian Prototaip

Serupa dengan rangkaian padanan ialah rangkaian prototaip (PN). Ia meningkatkan prestasi algoritma melalui beberapa perubahan halus. PN mencapai hasil yang lebih baik daripada MN, tetapi proses latihan mereka pada asasnya adalah sama, hanya membandingkan beberapa pembenaman imej pertanyaan daripada set sokongan, tetapi rangkaian prototaip menyediakan strategi yang berbeza.

Kita perlu mencipta prototaip kelas dalam PN: pembenaman kelas yang dibuat dengan purata pembenaman imej dalam kelas. Hanya prototaip kelas ini kemudiannya digunakan untuk membandingkan benam imej pertanyaan. Apabila digunakan untuk masalah pembelajaran sampel tunggal, ia adalah setanding dengan rangkaian yang sepadan.

Rangkaian Perhubungan Rangkaian Perhubungan

Rangkaian perhubungan boleh dikatakan mewarisi hasil kajian terhadap semua kaedah yang dinyatakan di atas. RN adalah berdasarkan idea PN tetapi mengandungi peningkatan algoritma yang ketara.

Fungsi jarak yang digunakan oleh kaedah ini boleh dipelajari, bukannya mentakrifkannya terlebih dahulu seperti kajian terdahulu. Modul perhubungan terletak di atas modul benam, iaitu bahagian yang mengira benam dan prototaip kelas daripada imej input.

Input modul hubungan boleh dilatih (fungsi jarak) ialah pembenaman imej pertanyaan dengan prototaip setiap kelas dan output ialah skor hubungan setiap padanan kelas. Skor hubungan dilalui melalui Softmax untuk mendapatkan ramalan.

Klasifikasi imej dengan pembelajaran beberapa tangkapan menggunakan PyTorch

Menggunakan Open-AI Clip untuk pembelajaran sifar pukulan

KLIP (Pra-Latihan Imej-Bahasa Kontrastif) ialah alat untuk pelbagai (imej, teks ) Pada rangkaian saraf terlatih. Ia boleh meramalkan serpihan teks yang paling berkaitan untuk imej tertentu tanpa dioptimumkan secara langsung untuk tugasan (serupa dengan fungsi tangkapan sifar GPT-2 dan 3).

CLIP boleh mencapai prestasi ResNet50 asal pada "sampel sifar" ImageNet dan tidak memerlukan penggunaan mana-mana contoh berlabel Ia mengatasi beberapa cabaran utama dalam penglihatan komputer Di bawah kami menggunakan Pytorch untuk melaksanakan yang mudah Model pengelasan.

Perkenalkan pakej

! pip install ftfy regex tqdm
 ! pip install git+https://github.com/openai/CLIP.gitimport numpy as np
 import torch
 from pkg_resources import packaging
 
 print("Torch version:", torch.__version__)
Salin selepas log masuk

Muat model

import clipclip.available_models() # it will list the names of available CLIP modelsmodel, preprocess = clip.load("ViT-B/32")
 model.cuda().eval()
 input_resolution = model.visual.input_resolution
 context_length = model.context_length
 vocab_size = model.vocab_size
 
 print("Model parameters:", f"{np.sum([int(np.prod(p.shape)) for p in model.parameters()]):,}")
 print("Input resolution:", input_resolution)
 print("Context length:", context_length)
 print("Vocab size:", vocab_size)
Salin selepas log masuk

prapemprosesan imej

Kami akan memasukkan 8 contoh imej dan penerangan teksnya kepada model , dan bandingkan persamaan antara ciri yang sepadan.

Tokenizer tidak sensitif huruf besar dan kecil dan kami bebas memberikan sebarang penerangan teks yang sesuai.

 import os
 import skimage
 import IPython.display
 import matplotlib.pyplot as plt
 from PIL import Image
 import numpy as np
 
 from collections import OrderedDict
 import torch
 
 %matplotlib inline
 %config InlineBackend.figure_format = 'retina'
 
 # images in skimage to use and their textual descriptions
 descriptions = {
"page": "a page of text about segmentation",
"chelsea": "a facial photo of a tabby cat",
"astronaut": "a portrait of an astronaut with the American flag",
"rocket": "a rocket standing on a launchpad",
"motorcycle_right": "a red motorcycle standing in a garage",
"camera": "a person looking at a camera on a tripod",
"horse": "a black-and-white silhouette of a horse",
"coffee": "a cup of coffee on a saucer"
 }original_images = []
 images = []
 texts = []
 plt.figure(figsize=(16, 5))
 
 for filename in [filename for filename in os.listdir(skimage.data_dir) if filename.endswith(".png") or filename.endswith(".jpg")]:
name = os.path.splitext(filename)[0]
if name not in descriptions:
continue
 
image = Image.open(os.path.join(skimage.data_dir, filename)).convert("RGB")
 
plt.subplot(2, 4, len(images) + 1)
plt.imshow(image)
plt.title(f"{filename}n{descriptions[name]}")
plt.xticks([])
plt.yticks([])
 
original_images.append(image)
images.append(preprocess(image))
texts.append(descriptions[name])
 
 plt.tight_layout()
Salin selepas log masuk

Visualisasi keputusan adalah seperti berikut:

Klasifikasi imej dengan pembelajaran beberapa tangkapan menggunakan PyTorch

Kami menormalkan imej, melabel setiap input teks dan menjalankan penyebaran model ke hadapan untuk mendapatkan Ciri-ciri imej dan teks.

image_input = torch.tensor(np.stack(images)).cuda()
 text_tokens = clip.tokenize(["This is " + desc for desc in texts]).cuda()
 
 with torch.no_grad():
Salin selepas log masuk

Kami menormalkan ciri dan mengira hasil darab titik setiap pasangan untuk melaksanakan pengiraan persamaan kosinus

 image_features /= image_features.norm(dim=-1, keepdim=True)
 text_features /= text_features.norm(dim=-1, keepdim=True)
 similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
 
 count = len(descriptions)
 
 plt.figure(figsize=(20, 14))
 plt.imshow(similarity, vmin=0.1, vmax=0.3)
 # plt.colorbar()
 plt.yticks(range(count), texts, fontsize=18)
 plt.xticks([])
 for i, image in enumerate(original_images):
plt.imshow(image, extent=(i - 0.5, i + 0.5, -1.6, -0.6), origin="lower")
 for x in range(similarity.shape[1]):
for y in range(similarity.shape[0]):
plt.text(x, y, f"{similarity[y, x]:.2f}", ha="center", va="center", size=12)
 
 for side in ["left", "top", "right", "bottom"]:
plt.gca().spines[side].set_visible(False)
 
 plt.xlim([-0.5, count - 0.5])
 plt.ylim([count + 0.5, -2])
 
 plt.title("Cosine similarity between text and image features", size=20)
Salin selepas log masuk

Klasifikasi imej dengan pembelajaran beberapa tangkapan menggunakan PyTorch

Sampel sifar Pengelasan imej

 from torchvision.datasets import CIFAR100
 cifar100 = CIFAR100(os.path.expanduser("~/.cache"), transform=preprocess, download=True)
 text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]
 text_tokens = clip.tokenize(text_descriptions).cuda()
 with torch.no_grad():
text_features = model.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
 
 text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
 top_probs, top_labels = text_probs.cpu().topk(5, dim=-1)
 plt.figure(figsize=(16, 16))
 for i, image in enumerate(original_images):
plt.subplot(4, 4, 2 * i + 1)
plt.imshow(image)
plt.axis("off")
 
plt.subplot(4, 4, 2 * i + 2)
y = np.arange(top_probs.shape[-1])
plt.grid()
plt.barh(y, top_probs[i])
plt.gca().invert_yaxis()
plt.gca().set_axisbelow(True)
plt.yticks(y, [cifar100.classes[index] for index in top_labels[i].numpy()])
plt.xlabel("probability")
 
 plt.subplots_adjust(wspace=0.5)
 plt.show()
Salin selepas log masuk

Klasifikasi imej dengan pembelajaran beberapa tangkapan menggunakan PyTorch

dapat dilihat bahawa kesan klasifikasi masih sangat baik.

Atas ialah kandungan terperinci Klasifikasi imej dengan pembelajaran beberapa tangkapan menggunakan PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Jun 01, 2024 am 10:58 AM

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Apr 29, 2024 pm 06:50 PM

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Apr 12, 2024 pm 05:55 PM

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Apr 29, 2024 pm 03:25 PM

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks Jun 03, 2024 pm 10:08 PM

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud May 30, 2024 pm 01:24 PM

MetaFAIR bekerjasama dengan Harvard untuk menyediakan rangka kerja penyelidikan baharu untuk mengoptimumkan bias data yang dijana apabila pembelajaran mesin berskala besar dilakukan. Adalah diketahui bahawa latihan model bahasa besar sering mengambil masa berbulan-bulan dan menggunakan ratusan atau bahkan ribuan GPU. Mengambil model LLaMA270B sebagai contoh, latihannya memerlukan sejumlah 1,720,320 jam GPU. Melatih model besar memberikan cabaran sistemik yang unik disebabkan oleh skala dan kerumitan beban kerja ini. Baru-baru ini, banyak institusi telah melaporkan ketidakstabilan dalam proses latihan apabila melatih model AI generatif SOTA Mereka biasanya muncul dalam bentuk lonjakan kerugian Contohnya, model PaLM Google mengalami sehingga 20 lonjakan kerugian semasa proses latihan. Bias berangka adalah punca ketidaktepatan latihan ini,

See all articles