


Belajar seperti bayi, model baharu DeepMind mempelajari peraturan dunia fizikal dalam masa 28 jam
Deepmind bertujuan untuk membina model yang boleh mempelajari fizik intuitif dan menganalisis sebab model itu mencapai keupayaan ini.
Dari AlphaFold kepada penaakulan matematik, DeepMind telah cuba menggabungkan AI dan sains asas. Kini, DeepMind telah mencipta model baharu yang boleh mempelajari peraturan fizikal mudah.
Pakar psikologi perkembangan menguji dan menganalisis cara bayi mengikuti pergerakan objek melalui pandangan mereka. Sebagai contoh, kanak-kanak melahirkan rasa terkejut apabila video dimainkan di mana bola tiba-tiba hilang.
Luis Piloto, seorang saintis komputer di DeepMind, dan rakan sekerja berharap dapat membangunkan ujian serupa untuk kecerdasan buatan (AI). Pasukan itu melatih rangkaian saraf menggunakan video animasi objek mudah seperti kiub dan bola, dan model itu belajar dengan menemui corak dalam jumlah data yang besar. Kertas penyelidikan itu diterbitkan pada 11 Julai dalam Nature Human Behavior.
- Alamat kertas: https://www.nature.com/articles/s41562-022-01394 -8
- Alamat set data: https://github.com/deepmind/physical_concepts
Model ini melaksanakan pembelajaran fizikal dengan mengekod dan menjejak objek secara automatik, Oleh itu nama PLATO (Pembelajaran Fizik melalui Pengekodan Auto dan Objek Penjejakan). PLATO menerima imej asal daripada video dan versi imej yang menyerlahkan sasaran setiap objek dalam adegan. PLATO bertujuan untuk membangunkan perwakilan dalaman sifat fizikal objek, seperti kedudukan dan halajunya.
Sistem ini telah dilatih pada kira-kira 30 jam video yang menunjukkan mekanisme gerakan mudah (seperti bola bergolek menuruni cerun) dan membangunkan keupayaan untuk meramalkan kelakuan objek ini dalam situasi yang berbeza . Khususnya, PLATO mempelajari kesinambungan dan keteguhan untuk memastikan trajektori sasaran tidak terganggu dan bentuk objek adalah berterusan. Apabila video dimainkan, ramalan model menjadi lebih tepat.
Apabila memainkan video dengan peristiwa "mustahil", seperti objek yang tiba-tiba hilang, PLATO boleh mengukur perbezaan antara video dan ramalannya sendiri, sekali gus memberikan ukuran "kejutan".
Piloto berkata: "PLATO tidak direka sebagai model tingkah laku bayi, tetapi ia boleh menguji hipotesis tentang cara bayi manusia belajar. Kami berharap saintis kognitif akhirnya akan menggunakannya untuk mensimulasikan tingkah laku bayi."
Jeff Clune, seorang saintis komputer di University of British Columbia, berkata, "Membandingkan AI dengan kaedah pembelajaran bayi manusia ialah hala tuju penyelidikan yang penting. Penyelidik PLATO mereka bentuk tangan banyak pengetahuan sedia ada yang memberikan model kecerdasan buatan kelebihan." Penyelidik seperti Clune cuba membenarkan program membangunkan algoritma mereka sendiri untuk memahami dunia fizikal. Menggunakan pengetahuan daripada psikologi perkembanganUntuk mengejar intuisi fizikal yang lebih kaya dalam sistem AI, pasukan penyelidik DeepMind mendapat inspirasi daripada psikologi perkembangan. Pasukan penyelidik membina sistem pembelajaran mendalam yang menggabungkan pandangan teras daripada psikologi perkembangan, iaitu fizik difahami pada tahap objek diskret dan interaksinya. Teras fizik intuitif bergantung pada set konsep diskret (cth., kegigihan objek, kepejalan, kesinambungan, dll.) yang boleh dibezakan, dimanipulasi dan dikesan secara individu. Pendekatan tradisional dan standard untuk pembelajaran AI fizik intuitif belajar tentang dunia fizikal melalui video atau peramal keadaan, ramalan hasil binari, prestasi soalan-jawapan atau tugasan pembelajaran pengukuhan. Pendekatan ini nampaknya memerlukan pemahaman beberapa aspek fizik intuitif tetapi tidak beroperasi secara eksplisit atau meneroka set konsep yang jelas secara strategik. Psikologi perkembangan, sebaliknya, berpendapat bahawa konsep fizikal sepadan dengan satu set jangkaan tentang bagaimana masa depan akan berlaku. Sebagai contoh, orang menjangkakan bahawa objek tidak akan secara ajaib teleport dari satu tempat ke tempat lain secara tiba-tiba, tetapi akan mengesan laluan berterusan melalui masa dan ruang, yang membawa kepada konsep kesinambungan. Oleh itu, terdapat satu cara untuk mengukur pengetahuan tentang konsep fizikal tertentu: paradigma Pelanggaran Jangkaan (VoE). Apabila meneroka konsep tertentu menggunakan paradigma VoE, penyelidik menunjukkan tatasusunan visual yang serupa (dipanggil probe) pada bayi yang sama ada konsisten (mungkin secara fizikal) atau tidak konsisten (tidak mungkin secara fizikal) dengan konsep fizikal yang mungkin. Dalam paradigma ini, "kejutan" diukur dengan tempoh pandangan.Pengenalan kaedah
Pertama, DeepMind mencadangkan korpus video yang sangat kaya - set data Konsep Fizikal. Set data ini mengandungi video siasatan VoE yang menyasarkan lima konsep fizikal penting yang dianggap sebagai elemen teras dalam psikologi perkembangan, termasuk kesinambungan, kegigihan matlamat dan keteguhan. Keempat ialah kebolehubah, yang menangkap konsep bahawa sifat sasaran tertentu (seperti bentuk) tidak berubah; konsep kelima ialah inersia arah, yang melibatkan jangkaan bahawa objek yang bergerak akan berubah dalam arah yang konsisten dengan prinsip inersia.
Perkara yang paling penting ialah set data Konsep Fizikal juga termasuk korpus video yang berasingan sebagai data latihan. Video ini menunjukkan pelbagai acara fizik yang dihasilkan secara prosedur.
Rajah 2: Contoh set data video yang digunakan untuk melatih model
Seni bina model PLATO
Deepmind bertujuan membina intuitif pembelajaran model fizik, dan menganalisis mengapa model mencapai keupayaan ini. Beberapa sistem lanjutan dalam bidang AI digunakan dalam model PLATO.
Pertama ialah proses pemperibadian sasaran. Proses pemperibadian sasaran memotong input deria penglihatan berterusan kepada satu set entiti diskret, yang setiap satunya mempunyai set atribut yang sepadan. Dalam PLATO, setiap bingkai video bersegmen diuraikan kepada satu set kod sasaran (Rajah 3a-c) oleh modul persepsi, membolehkan pemetaan daripada input visual kepada sasaran individu. PLATO tidak belajar membahagikan adegan, tetapi memandangkan sasaran pembahagian, ia mempelajari perwakilan termampat.
Kedua, penjejakan sasaran (atau indeks sasaran) memberikan indeks kepada setiap sasaran, dengan itu mencapai kesesuaian antara persepsi sasaran dan pengiraan atribut dinamik merentas masa (Rajah 3b, c). Dalam PLATO, kod sasaran terkumpul dan dijejaki pada bingkai dalam penimbal sasaran (Rajah 3d).
Komponen terakhir ialah pemprosesan perhubungan bagi sasaran yang dijejak ini Proses ini diilhamkan oleh "sistem penaakulan fizikal" yang dicadangkan dalam psikologi perkembangan, yang boleh memproses perhubungan antara objek secara dinamik , menjana perwakilan baharu yang dipengaruhi oleh hubungan dan interaksi antara objek dan objek lain.
PLATO mempelajari interaksi antara memori sasaran dan sejarah persepsi sasaran (Rajah 3d) untuk menjana bingkai video yang diramalkan untuk sasaran seterusnya dan mengemas kini memori berasaskan sasaran.
Rajah 3: PLATO merangkumi dua komponen: modul persepsi (kiri) dan ramalan dinamik (kanan)
Hasil eksperimen
Dalam Bila diuji, PLATO menunjukkan kesan VoE yang kuat dalam semua lima kategori pengesanan apabila dilatih dengan lima benih rawak yang berbeza.
Rajah 5: PLATO menunjukkan prestasi teguh dalam meneliti set data Konsep Fizikal.
Korpus latihan dalam set data Konsep Fizikal mengandungi sejumlah 300,000 video. Menggunakan pengiraan konservatif, kira-kira 52 hari pengalaman visual berterusan diperlukan. Dari perspektif AI dan pembangunan, terdapat persoalan tentang berapa banyak data latihan sebenarnya diperlukan untuk menghasilkan kesan VoE dalam ujian. Untuk menilai ini, Deepmind melatih benih rawak tiga peramal dinamik PLATO pada set data saiz yang semakin berkurangan (Rajah 6), mengira purata besar kesan VoE merentas kelima-lima kelas pengesanan.
Keputusan menunjukkan kesan VoE yang mantap dalam model Deepmind selepas latihan dengan sekurang-kurangnya 50,000 contoh (bersamaan dengan 28 jam pengalaman visual) .
Rajah 6: PLATO menunjukkan hasil yang hebat dalam hanya 28 jam pengalaman visual.
Ujian generalisasi: Deepmind menggunakan set data ADEPT, yang direka bentuk untuk meneroka pengetahuan fizikal intuitif. Seperti yang ditunjukkan dalam Rajah 7, PLATO menunjukkan kesan VoE yang jelas untuk ketiga-tiga kategori pengesanan.
Rajah 7: PLATO menunjukkan kesan teguh pada sasaran dan dinamik yang tidak kelihatan tanpa sebarang latihan semula.
Untuk maklumat lanjut, sila lihat kertas asal.
Atas ialah kandungan terperinci Belajar seperti bayi, model baharu DeepMind mempelajari peraturan dunia fizikal dalam masa 28 jam. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Apabila menukar rentetan ke objek dalam vue.js, json.parse () lebih disukai untuk rentetan json standard. Untuk rentetan JSON yang tidak standard, rentetan boleh diproses dengan menggunakan ungkapan biasa dan mengurangkan kaedah mengikut format atau url yang dikodkan. Pilih kaedah yang sesuai mengikut format rentetan dan perhatikan isu keselamatan dan pengekodan untuk mengelakkan pepijat.

Jurutera Backend Senior Remote Company Kekosongan Syarikat: Lokasi Lokasi: Jauh Pejabat Jauh Jenis: Gaji sepenuh masa: $ 130,000- $ 140,000 Penerangan Pekerjaan Mengambil bahagian dalam penyelidikan dan pembangunan aplikasi mudah alih Circle dan ciri-ciri berkaitan API awam yang meliputi keseluruhan kitaran hayat pembangunan perisian. Tanggungjawab utama kerja pembangunan secara bebas berdasarkan rubyonrails dan bekerjasama dengan pasukan react/redux/relay front-end. Membina fungsi teras dan penambahbaikan untuk aplikasi web dan bekerjasama rapat dengan pereka dan kepimpinan sepanjang proses reka bentuk berfungsi. Menggalakkan proses pembangunan positif dan mengutamakan kelajuan lelaran. Memerlukan lebih daripada 6 tahun backend aplikasi web kompleks

Ringkasan: Terdapat kaedah berikut untuk menukar array rentetan vue.js ke dalam tatasusunan objek: Kaedah asas: Gunakan fungsi peta yang sesuai dengan data yang diformat biasa. Permainan lanjutan: Menggunakan ungkapan biasa boleh mengendalikan format yang kompleks, tetapi mereka perlu ditulis dengan teliti dan dipertimbangkan. Pengoptimuman Prestasi: Memandangkan banyak data, operasi tak segerak atau perpustakaan pemprosesan data yang cekap boleh digunakan. Amalan Terbaik: Gaya Kod Jelas, Gunakan nama dan komen pembolehubah yang bermakna untuk memastikan kod ringkas.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Cecair memproses 7 juta rekod dan membuat peta interaktif dengan teknologi geospatial. Artikel ini meneroka cara memproses lebih dari 7 juta rekod menggunakan Laravel dan MySQL dan mengubahnya menjadi visualisasi peta interaktif. Keperluan Projek Cabaran Awal: Ekstrak Wawasan berharga menggunakan 7 juta rekod dalam pangkalan data MySQL. Ramai orang mula -mula mempertimbangkan bahasa pengaturcaraan, tetapi mengabaikan pangkalan data itu sendiri: Bolehkah ia memenuhi keperluan? Adakah penghijrahan data atau pelarasan struktur diperlukan? Bolehkah MySQL menahan beban data yang besar? Analisis awal: Penapis utama dan sifat perlu dikenalpasti. Selepas analisis, didapati bahawa hanya beberapa atribut yang berkaitan dengan penyelesaiannya. Kami mengesahkan kemungkinan penapis dan menetapkan beberapa sekatan untuk mengoptimumkan carian. Carian Peta Berdasarkan Bandar

Vue dan Element-UI cascaded drop-down boxes v-model mengikat titik pit biasa: V-model mengikat array yang mewakili nilai yang dipilih pada setiap peringkat kotak pemilihan cascaded, bukan rentetan; Nilai awal pilihan terpilih mestilah array kosong, tidak batal atau tidak jelas; Pemuatan data dinamik memerlukan penggunaan kemahiran pengaturcaraan tak segerak untuk mengendalikan kemas kini data secara tidak segerak; Untuk set data yang besar, teknik pengoptimuman prestasi seperti menatal maya dan pemuatan malas harus dipertimbangkan.

Terdapat banyak sebab mengapa permulaan MySQL gagal, dan ia boleh didiagnosis dengan memeriksa log ralat. Penyebab umum termasuk konflik pelabuhan (periksa penghunian pelabuhan dan ubah suai konfigurasi), isu kebenaran (periksa keizinan pengguna yang menjalankan perkhidmatan), ralat fail konfigurasi (periksa tetapan parameter), rasuah direktori data (memulihkan data atau membina semula ruang meja), isu ruang jadual InnoDB (semak fail ibdata1) Apabila menyelesaikan masalah, anda harus menganalisisnya berdasarkan log ralat, cari punca utama masalah, dan mengembangkan tabiat sandaran data secara teratur untuk mencegah dan menyelesaikan masalah.

Pengoptimuman prestasi MySQL perlu bermula dari tiga aspek: konfigurasi pemasangan, pengindeksan dan pengoptimuman pertanyaan, pemantauan dan penalaan. 1. Selepas pemasangan, anda perlu menyesuaikan fail my.cnf mengikut konfigurasi pelayan, seperti parameter innodb_buffer_pool_size, dan tutup query_cache_size; 2. Buat indeks yang sesuai untuk mengelakkan indeks yang berlebihan, dan mengoptimumkan pernyataan pertanyaan, seperti menggunakan perintah menjelaskan untuk menganalisis pelan pelaksanaan; 3. Gunakan alat pemantauan MySQL sendiri (ShowProcessList, ShowStatus) untuk memantau kesihatan pangkalan data, dan kerap membuat semula dan mengatur pangkalan data. Hanya dengan terus mengoptimumkan langkah -langkah ini, prestasi pangkalan data MySQL diperbaiki.
