Empat langkah untuk kejayaan aplikasi kecerdasan buatan dalam pembuatan
Pengilang boleh mendapat manfaat daripada kecerdasan buatan dalam pelbagai cara, seperti meningkatkan pengeluaran, kawalan kualiti dan kecekapan. Walaupun AI menawarkan beberapa aplikasi baharu untuk pengilang, untuk mendapatkan nilai tertinggi, syarikat mesti menggunakannya sepanjang keseluruhan proses pembuatan.
Ini bermakna jurutera pembuatan perlu menumpukan pada empat aspek utama penyediaan data AI, pemodelan, simulasi dan ujian serta penggunaan untuk berjaya beroperasi dalam pembuatan tanpa gangguan. Kecerdasan buatan adalah digunakan dalam proses.
Tidak perlu menjadi pakar AI
Jurutera mungkin berpendapat bahawa membangunkan model AI mengambil masa yang agak lama, tetapi ini selalunya tidak berlaku. Pemodelan ialah langkah penting dalam proses aliran kerja, tetapi ia bukan matlamat akhir. Kunci untuk berjaya menggunakan AI ialah mengenal pasti sebarang isu pada permulaan proses. Ini membolehkan jurutera mengetahui aspek aliran kerja yang memerlukan pelaburan masa dan sumber untuk mendapatkan hasil yang terbaik.
Apabila membincangkan aliran kerja, terdapat dua perkara yang perlu dipertimbangkan:
Sistem pembuatan adalah besar dan kompleks, dan kecerdasan buatan hanyalah satu bahagian daripadanya. Oleh itu, AI perlu bekerjasama dengan semua bahagian kerja lain pada barisan pengeluaran dalam semua senario. Sebahagian daripada ini menggunakan protokol komunikasi industri, seperti OPCUA, dan perisian mesin lain, seperti logik kawalan dan pemantauan serta antara muka mesin manusia, untuk mengumpul data daripada penderia pada peralatan.
Dalam kes ini, jurutera telah pun bersedia untuk berjaya apabila menggabungkan AI kerana mereka sudah memahami peranti itu, tidak kira sama ada mereka mempunyai pengalaman AI yang luas. Dalam erti kata lain, jika mereka bukan pakar AI, mereka masih boleh menggunakan kepakaran mereka untuk berjaya menambahkan AI pada aliran kerja mereka.
Aliran kerja dipacu AI
Membina aliran kerja dipacu AI memerlukan 4 langkah:
1 Penyediaan data
Apabila tiada yang baik Apabila menggunakan data untuk melatih model AI, projek lebih berkemungkinan gagal. Oleh itu, penyediaan data adalah penting. Data yang salah boleh memakan masa jurutera untuk mengetahui sebab model itu tidak berfungsi.
Melatih model biasanya merupakan langkah yang paling memakan masa, tetapi ia juga merupakan langkah penting. Jurutera harus bermula dengan data yang paling bersih, berlabel yang mungkin dan menumpukan pada memasukkan data ke dalam model daripada menumpukan pada menambah baik model.
Sebagai contoh, jurutera harus menumpukan pada prapemprosesan dan memastikan data yang dimasukkan ke dalam model dilabel dengan betul, bukannya melaraskan parameter dan memperhalusi model. Ini memastikan model memahami dan memproses data.
Cabaran lain ialah perbezaan antara operator mesin dan pengeluar mesin. Yang pertama biasanya mempunyai akses kepada operasi peranti, manakala yang kedua memerlukan data ini untuk melatih model AI. Untuk memastikan pengeluar mesin berkongsi data dengan pengendali mesin (iaitu pelanggan mereka), kedua-dua pihak harus membangunkan protokol dan model perniagaan untuk mengawal perkongsian ini.
Pengilang peralatan pembinaan Caterpillar memberikan contoh yang bagus tentang kepentingan penyediaan data. Ia mengumpul sejumlah besar data medan, yang, walaupun diperlukan untuk pemodelan AI yang tepat, bermakna ia mengambil banyak masa untuk membersihkan dan melabel data. Syarikat itu berjaya memanfaatkan MATLAB untuk menyelaraskan proses ini. Ia membantu syarikat membangunkan data berlabel bersih yang kemudiannya boleh dimasukkan ke dalam model pembelajaran mesin, memanfaatkan cerapan yang berkuasa daripada jentera di lapangan. Selain itu, proses ini berskala dan fleksibel untuk pengguna yang mempunyai kepakaran domain tetapi bukan pakar AI.
2. Pemodelan Kecerdasan Buatan
Fasa ini bermula selepas data dibersihkan dan dilabelkan dengan betul. Sebenarnya, ini adalah apabila model belajar daripada data. Jurutera tahu mereka telah memasuki fasa pemodelan yang berjaya apabila mereka mempunyai model yang tepat dan boleh dipercayai yang boleh membuat keputusan bijak berdasarkan input. Peringkat ini juga memerlukan jurutera menggunakan pembelajaran mesin, pembelajaran mendalam atau gabungan kedua-duanya untuk menentukan keputusan yang paling tepat.
Dalam fasa pemodelan, sama ada menggunakan model pembelajaran mendalam atau pembelajaran mesin, adalah penting untuk mempunyai akses kepada beberapa algoritma aliran kerja kecerdasan buatan, seperti klasifikasi, ramalan dan regresi. Sebagai titik permulaan, pelbagai model pra-bina yang dicipta oleh komuniti yang lebih luas mungkin berguna. Jurutera juga boleh menggunakan alat yang fleksibel seperti MATLAB dan Simulink.
Perlu diambil perhatian bahawa walaupun algoritma dan model pra-bina merupakan permulaan yang baik, jurutera harus mencari laluan paling cekap untuk pelaksanaan khusus mereka dengan menggunakan algoritma dan contoh daripada orang lain dalam Sasaran bidang mereka. Itulah sebabnya MATLAB menyediakan ratusan contoh berbeza untuk membina model AI merentas berbilang domain.
Selain itu, aspek lain yang perlu dipertimbangkan ialah penjejakan perubahan dan pengelogan lelaran latihan adalah penting. Alat seperti Pengurus Eksperimen boleh membantu mencapai ini dengan mentafsir parameter yang membawa kepada model yang paling tepat dan hasil yang boleh dihasilkan semula.
3. Simulasi dan ujian
Langkah ini memastikan model AI berfungsi dengan betul. Model AI adalah sebahagian daripada sistem yang lebih besar dan perlu berfungsi dengan pelbagai bahagian sistem. Contohnya, dalam pembuatan, model AI mungkin menyokong penyelenggaraan ramalan, perancangan trajektori dinamik atau pemeriksaan kualiti visual.
Selebihnya perisian mesin termasuk kawalan, logik pemantauan dan komponen lain. Simulasi dan ujian memberitahu jurutera bahawa bahagian model berfungsi seperti yang diharapkan, kedua-duanya sendiri dan dengan sistem lain. Sesuatu model hanya boleh digunakan dalam dunia nyata jika ia boleh ditunjukkan bahawa ia berfungsi seperti yang diharapkan dan cukup berkesan untuk mengurangkan risiko.
Tidak kira situasi, model mesti bertindak balas dengan cara yang sepatutnya. Sebelum menggunakan model, jurutera harus memahami beberapa soalan pada peringkat ini:
- Adakah model itu sangat tepat?
- Dalam setiap senario, adakah model itu berprestasi seperti yang diharapkan?
- Adakah semua sarung tepi dilindungi?
Alat seperti Simulink membolehkan jurutera menyemak sama ada model berkelakuan seperti yang diharapkan sebelum menggunakannya pada peranti. Ini membantu mengelakkan daripada menghabiskan masa dan wang untuk reka bentuk semula. Alat ini juga membantu membina tahap kepercayaan yang tinggi dengan berjaya mensimulasikan dan menguji kes yang dimaksudkan model dan mengesahkan bahawa matlamat yang diharapkan tercapai.
4. Penggunaan
Setelah anda bersedia untuk menggunakan, langkah seterusnya ialah menyediakan model dalam bahasa yang akan digunakan. Untuk melakukan ini, jurutera selalunya perlu berkongsi model luar biasa. Ini membolehkan model disesuaikan dengan persekitaran perkakasan kawalan tertentu, seperti pengawal terbenam, PLC atau peranti tepi. Alat fleksibel seperti MATLAB selalunya boleh menjana kod akhir dalam sebarang jenis senario, memberikan jurutera keupayaan untuk menggunakan model dalam banyak persekitaran berbeza daripada vendor perkakasan yang berbeza. Mereka boleh melakukan ini tanpa menulis semula kod asal.
Sebagai contoh, apabila menggunakan model terus ke PLC, penjanaan kod automatik menghapuskan ralat pengekodan yang mungkin disertakan semasa pengaturcaraan manual. Ini juga menyediakan kod C/C++ atau IEC61131 yang dioptimumkan yang akan berjalan dengan cekap pada PLC vendor utama.
Penggunaan kecerdasan buatan yang berjaya tidak memerlukan saintis data atau pakar kecerdasan buatan. Walau bagaimanapun, terdapat beberapa sumber utama yang boleh membantu jurutera dan model AI mereka bersedia untuk berjaya. Ini termasuk alatan khusus yang dibuat untuk saintis dan jurutera, apl dan keupayaan untuk menambahkan AI pada aliran kerja, pelbagai pilihan penggunaan untuk digunakan dalam operasi tanpa henti dan pakar bersedia untuk menjawab soalan berkaitan AI. Memberi jurutera sumber yang betul untuk membantu berjaya menambahkan AI akan membolehkan mereka memberikan hasil yang terbaik.
Atas ialah kandungan terperinci Empat langkah untuk kejayaan aplikasi kecerdasan buatan dalam pembuatan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Minggu lalu, di tengah gelombang peletakan jawatan dalaman dan kritikan luar, OpenAI dibelenggu oleh masalah dalaman dan luaran: - Pelanggaran kakak balu itu mencetuskan perbincangan hangat global - Pekerja menandatangani "fasal tuan" didedahkan satu demi satu - Netizen menyenaraikan " Ultraman " tujuh dosa maut" ” Pembasmi khabar angin: Menurut maklumat dan dokumen bocor yang diperolehi oleh Vox, kepimpinan kanan OpenAI, termasuk Altman, sangat mengetahui peruntukan pemulihan ekuiti ini dan menandatanganinya. Di samping itu, terdapat isu serius dan mendesak yang dihadapi oleh OpenAI - keselamatan AI. Pemergian lima pekerja berkaitan keselamatan baru-baru ini, termasuk dua pekerjanya yang paling terkemuka, dan pembubaran pasukan "Penjajaran Super" sekali lagi meletakkan isu keselamatan OpenAI dalam perhatian. Majalah Fortune melaporkan bahawa OpenA

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S
