Jadual Kandungan
Apakah itu BLOOM?
Ketelusan, keterbukaan dan keterangkuman
Cabaran kekal
Rumah Peranti teknologi AI BLOOM boleh mencipta budaya baharu untuk penyelidikan AI, tetapi cabaran masih ada

BLOOM boleh mencipta budaya baharu untuk penyelidikan AI, tetapi cabaran masih ada

Apr 09, 2023 pm 04:21 PM
AI model bahasa bloom

​Penterjemah |. Li Rui

Penilai |. Sun Shujuan

Projek penyelidikan BigScience baru-baru ini mengeluarkan model bahasa besar BLOOM -3.

Tetapi apa yang membezakan BLOOM daripada model bahasa semula jadi (LLM) berskala besar lain ialah usahanya dalam menyelidik, membangun, melatih dan mengeluarkan model pembelajaran mesin.

Dalam beberapa tahun kebelakangan ini, syarikat teknologi besar telah menyembunyikan model bahasa semula jadi (LLM) berskala besar seperti rahsia perdagangan yang dikawal ketat, dan pasukan BigScience telah meletakkan ketelusan dan keterbukaan di tengah-tengah BLOOM dari awal projek .

Hasilnya ialah model bahasa yang besar, sedia untuk penyelidikan dan pembelajaran, serta tersedia untuk semua orang. Contoh sumber terbuka dan kerjasama terbuka yang diwujudkan oleh BLOOM akan sangat bermanfaat untuk penyelidikan masa depan dalam model bahasa semula jadi (LLM) berskala besar dan bidang kecerdasan buatan yang lain. Tetapi masih terdapat beberapa cabaran yang wujud dalam model bahasa besar yang perlu ditangani.

Apakah itu BLOOM?

BLOOM boleh mencipta budaya baharu untuk penyelidikan AI, tetapi cabaran masih ada

BLOOM ialah singkatan daripada "BigScience Open Access Multilingual Model". Dari sudut data, ia tidak jauh berbeza dengan GPT-3 dan OPT-175B. Ia adalah model Transformer yang sangat besar, dengan 176 bilion parameter, dilatih menggunakan 1.6TB data, termasuk bahasa semula jadi dan kod sumber perisian.

Seperti GPT-3, ia boleh melaksanakan banyak tugas melalui pembelajaran sifar atau beberapa pukulan, termasuk penjanaan teks, ringkasan, menjawab soalan dan pengaturcaraan.

Tetapi kepentingan BLOOM terletak pada organisasi dan proses pembinaan di belakangnya.

BigScience ialah projek penyelidikan yang dilancarkan pada 2021 oleh Pusat Model Pembelajaran Mesin "Hugging Face". Menurut laman webnya, projek itu "bertujuan untuk menunjukkan cara alternatif untuk mencipta, mempelajari dan berkongsi model bahasa yang besar dan artifak penyelidikan yang besar dalam komuniti penyelidikan AI/NLP."

Dalam hal ini, BigScience mendapat inspirasi daripada inisiatif pembuatan sains seperti CERN dan Large Hadron Collider (LHC), di mana kerjasama saintifik terbuka mempromosikan artifak berskala besar yang berguna kepada seluruh komuniti penyelidikan penciptaan.

Dalam satu tahun sejak Mei 2021, lebih 1,000 penyelidik dari 60 negara dan lebih 250 institusi telah mencipta bersama BLOOM dalam BigScience.

Ketelusan, keterbukaan dan keterangkuman

Walaupun kebanyakan model bahasa semula jadi (LLM) berskala besar utama dilatih pada teks bahasa Inggeris sahaja, korpus latihan BLOOM merangkumi 46 bahasa semula jadi dan 13 bahasa pengaturcaraan. Ini berguna di banyak wilayah yang bahasa utamanya bukan bahasa Inggeris.

BLOOM juga memecahkan pergantungan sebenar pada model syarikat latihan teknologi besar. Salah satu masalah utama dengan model bahasa semula jadi yang besar (LLM) ialah kos latihan dan penalaan yang tinggi. Halangan ini menjadikan model bahasa semula jadi yang besar (LLM) dengan 100 bilion parameter domain eksklusif syarikat teknologi besar dengan poket yang dalam. Dalam beberapa tahun kebelakangan ini, makmal kecerdasan buatan telah tertarik oleh syarikat teknologi besar untuk mendapatkan sumber pengkomputeran awan bersubsidi dan membiayai penyelidikan mereka.

Sebaliknya, pasukan penyelidik BigScience menerima geran 3 juta euro daripada Pusat Penyelidikan Saintifik Kebangsaan Perancis untuk melatih BLOOM pada superkomputer Jean Zay. Tiada perjanjian memberikan lesen eksklusif kepada teknologi kepada syarikat komersial, dan tiada komitmen untuk mengkomersialkan model dan menjadikannya produk yang menguntungkan.

Selain itu, pasukan BigScience benar-benar telus tentang keseluruhan proses latihan model. Mereka menerbitkan set data, transkrip mesyuarat, perbincangan dan kod, serta log dan butiran teknikal model latihan.

Penyelidik sedang mengkaji data dan metadata model dan menerbitkan penemuan menarik.

Sebagai contoh, penyelidik David McClure menulis tweet pada 12 Julai 2022, “Saya telah melihat set data latihan di sebalik model BLOOM yang sangat hebat daripada Bigscience dan Hugging Face Terdapat 10 juta sampel daripada korpus bahasa Inggeris , kira-kira 1.25% daripada jumlah keseluruhan, dikodkan dengan 'all-distilroberta-v1', dan kemudian UMAP kepada 2d "

Sudah tentu, model terlatih itu sendiri boleh digunakan dalam Hugging. Platform Face, yang melegakan penyelidik. dari kesakitan menghabiskan berjuta-juta dolar untuk melatih.

Facebook sumber terbuka salah satu model bahasa semula jadi (LLM) berskala besarnya di bawah beberapa sekatan bulan lepas. Walau bagaimanapun, ketelusan yang dibawa oleh BLOOM tidak pernah berlaku sebelum ini dan berjanji untuk menetapkan standard baharu untuk industri.

Teven LeScao, ketua bersama latihan BLOOM, berkata, "Berbanding dengan kerahsiaan makmal penyelidikan AI industri, BLOOM menunjukkan bahawa model AI yang paling berkuasa boleh dibangunkan secara bertanggungjawab dan terbuka oleh komuniti penyelidikan yang lebih luas "

Cabaran kekal

Walaupun usaha BigScience untuk membawa keterbukaan dan ketelusan kepada penyelidikan AI dan model bahasa berskala besar patut dipuji, cabaran masih wujud dalam bidang itu.

Penyelidikan model bahasa semula jadi (LLM) berskala besar sedang bergerak ke arah model yang lebih besar dan lebih besar, yang akan meningkatkan lagi kos latihan dan pengendalian. BLOOM menggunakan 384 GPU Nvidia Tesla A100 (berharga kira-kira $32,000 setiap satu) untuk latihan. Dan model yang lebih besar akan memerlukan kelompok pengkomputeran yang lebih besar. Pasukan BigScience telah mengumumkan bahawa ia akan terus mencipta model bahasa semula jadi besar (LLM) sumber terbuka lain, tetapi masih perlu dilihat bagaimana pasukan itu akan membiayai penyelidikannya yang semakin mahal. Sebagai contoh, OpenAI bermula sebagai organisasi bukan untung dan kemudian menjadi organisasi untung yang menjual produk dan bergantung pada pembiayaan daripada Microsoft.

Isu lain yang masih perlu diselesaikan ialah kos besar untuk menjalankan model ini. Model BLOOM termampat bersaiz 227GB, dan menjalankannya memerlukan perkakasan khusus dengan beratus-ratus GB memori. Sebagai perbandingan, GPT-3 memerlukan kluster pengkomputeran yang setara dengan Nvidia DGX 2, yang berharga kira-kira $400,000. Hugging Face merancang untuk melancarkan platform API yang akan membolehkan penyelidik menggunakan model itu untuk kira-kira $40 sejam, yang merupakan kos yang besar.

Kos menjalankan BLOOM juga akan memberi kesan kepada komuniti pembelajaran mesin gunaan, syarikat permulaan dan organisasi yang ingin membina produk yang dikuasakan oleh model bahasa semula jadi (LLM) berskala besar. Pada masa ini, API GPT-3 yang disediakan oleh OpenAI lebih sesuai untuk pembangunan produk. Menarik untuk melihat arah mana yang diambil oleh BigScience dan Hugging Face untuk membolehkan pembangun membina produk berdasarkan penyelidikan berharga mereka.

Dalam hal ini, seseorang menjangkakan versi model BigScience yang lebih kecil dalam keluaran akan datang. Bertentangan dengan apa yang sering dipaparkan dalam media, Model Bahasa Semulajadi Besar (LLM) masih mematuhi prinsip "tiada makan tengah hari percuma". Ini bermakna apabila menggunakan pembelajaran mesin, model yang lebih padat yang diperhalusi untuk tugasan tertentu adalah lebih berkesan daripada model yang sangat besar dengan prestasi purata pada banyak tugasan. Sebagai contoh, Codex ialah versi GPT-3 yang diubah suai yang memberikan bantuan besar dengan pengaturcaraan pada sebahagian kecil daripada saiz dan kos GPT-3. GitHub kini menawarkan produk berasaskan Codex, Copilot, dengan harga $10 sebulan.

Adalah menarik untuk meneliti ke mana perginya AI akademik dan gunaan pada masa hadapan kerana BLOOM berharap dapat mewujudkan budaya baharu.

Tajuk asal: BLOOM boleh menetapkan budaya baharu untuk penyelidikan AI—tetapi cabaran kekal​, pengarang :Ben Dickson​

Atas ialah kandungan terperinci BLOOM boleh mencipta budaya baharu untuk penyelidikan AI, tetapi cabaran masih ada. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Jun 28, 2024 am 03:51 AM

Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Jun 10, 2024 am 11:08 AM

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Jun 11, 2024 pm 03:57 PM

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Jun 07, 2024 am 10:06 AM

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. Aug 01, 2024 pm 09:40 PM

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas

See all articles