


ST-P3: Kaedah penglihatan pembelajaran ciri spatiotemporal hujung ke hujung untuk pemanduan autonomi
kertas arXiv "ST-P3: Pemanduan Autonomi Berasaskan Penglihatan Hujung-ke-hujung melalui Pembelajaran Ciri Spatial-Temporal", 22 Julai, pengarang dari Shanghai Jiao Tong University, Shanghai AI Laboratory, University of California San Diego dan JD. com Institut Penyelidikan Beijing.
Cadangkan skim pembelajaran ciri spatiotemporal yang boleh menyediakan satu set ciri yang lebih representatif untuk persepsi, ramalan dan perancangan secara serentak, yang dipanggil ST-P3. Khususnya, teknik pengumpulan sejajar egosentrik dicadangkan untuk mengekalkan maklumat geometri dalam ruang 3-D sebelum mengesan penukaran BEV; unit penghalusan diperkenalkan untuk mengimbangi pengecaman elemen visual yang dirancang. Butiran kod sumber, model dan protokol sumber terbuka https://github.com/OpenPerceptionX/ST-P3.
Kaedah Perintis LSS mengekstrak ciri perspektif daripada kamera berbilang paparan, mengangkatnya kepada 3D melalui anggaran kedalaman dan menggabungkannya ke dalam ruang BEV. Transformasi ciri antara dua paparan, yang ramalan kedalaman terpendamnya adalah penting.
Menaik taraf maklumat satah dua dimensi kepada tiga dimensi memerlukan dimensi tambahan, iaitu kedalaman yang sesuai untuk tugas pemanduan autonomi dengan geometri tiga dimensi. Untuk menambah baik lagi perwakilan ciri, adalah wajar untuk memasukkan maklumat temporal ke dalam rangka kerja kerana kebanyakan adegan ditugaskan dengan sumber video.
Seperti yang diterangkan dalam rajahST- P3Rangka kerja keseluruhan: Khususnya, diberikan satu set video kamera sekeliling, masukkannya ke dalam tulang belakang untuk menjana ciri pandangan hadapan awal. Melakukan anggaran kedalaman tambahan untuk menukar ciri 2D kepada ruang 3D. Skim pengumpulan penjajaran berpusatkan diri mula-mula menjajarkan ciri-ciri lepas kepada sistem koordinat paparan semasa. Ciri semasa dan masa lalu kemudiannya diagregatkan dalam ruang tiga dimensi, mengekalkan maklumat geometri sebelum ditukar kepada perwakilan BEV. Selain daripada model domain masa ramalan yang biasa digunakan, prestasi dipertingkatkan lagi dengan membina laluan kedua untuk menerangkan perubahan gerakan yang lalu. Pemodelan dwi-laluan ini memastikan perwakilan ciri yang lebih kukuh untuk membuat kesimpulan hasil semantik masa hadapan. Untuk mencapai matlamat akhir trajektori perancangan , ciri awal pengetahuan sedia ada rangkaian disepadukan. Modul penghalusan telah direka bentuk untuk menjana trajektori akhir dengan bantuan arahan peringkat tinggi tanpa adanya peta HD.
Gambar menunjukkan kaedah pengumpulan penjajaran egosentrik persepsi. (a) Gunakan anggaran kedalaman untuk menaikkan ciri pada cap masa semasa kepada 3D dan bergabung menjadi ciri BEV selepas penjajaran (b-c) Selaraskan ciri 3D bingkai sebelumnya dengan paparan bingkai semasa dan bercantum dengan semua keadaan masa lalu dan semasa; mempertingkatkan perwakilan ciri.
Seperti yang ditunjukkan dalam rajah ialah model dua hala yang digunakan untuk ramalan: (i) Kod terpendam ialah taburan daripada peta ciri; (ii iii) Cara a Ia menggabungkan taburan ketidakpastian yang menunjukkan pelbagai mod pada masa hadapan, manakala laluan b belajar daripada perubahan masa lalu, membantu maklumat laluan a untuk mengimbangi.
Sebagai matlamat utama, anda perlu merancang trajektori yang selamat dan selesa untuk mencapai titik sasaran. Perancang gerakan ini mengambil sampel satu set trajektori yang berbeza dan memilih satu yang meminimumkan fungsi kos yang dipelajari. Walau bagaimanapun, menyepadukan maklumat daripada titik sasaran dan lampu isyarat melalui model domain masa menambahkan langkah pengoptimuman tambahan.
Rajah menunjukkan penyepaduan dan penghalusan pengetahuan sedia ada untuk perancangan : gambar rajah kos keseluruhan termasuk dua subkos. Trajektori kos minimum ditakrifkan semula menggunakan ciri berpandangan ke hadapan untuk mengagregatkan maklumat berasaskan penglihatan daripada input kamera.
Menghukum trajektori dengan pecutan sisi yang besar, jerk atau kelengkungan. Semoga trajektori ini akan sampai ke destinasi dengan cekap, jadi kemajuan ke hadapan akan diberi ganjaran. Walau bagaimanapun, item kos di atas tidak mengandungi maklumat sasaran yang biasanya disediakan oleh peta laluan. Gunakan arahan peringkat tinggi, termasuk ke hadapan, belok kiri dan belok kanan, dan nilaikan trajektori hanya berdasarkan arahan yang sepadan.
Selain itu, lampu isyarat adalah penting untuk SDV mengoptimumkan trajektori melalui rangkaian GRU. Keadaan tersembunyi dimulakan dengan ciri kamera hadapan modul pengekod dan setiap titik sampel bagi jangka kos digunakan sebagai input.
Keputusan percubaan adalah seperti berikut:
Atas ialah kandungan terperinci ST-P3: Kaedah penglihatan pembelajaran ciri spatiotemporal hujung ke hujung untuk pemanduan autonomi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Ditulis di atas & pemahaman peribadi pengarang Gaussiansplatting tiga dimensi (3DGS) ialah teknologi transformatif yang telah muncul dalam bidang medan sinaran eksplisit dan grafik komputer dalam beberapa tahun kebelakangan ini. Kaedah inovatif ini dicirikan oleh penggunaan berjuta-juta Gaussians 3D, yang sangat berbeza daripada kaedah medan sinaran saraf (NeRF), yang terutamanya menggunakan model berasaskan koordinat tersirat untuk memetakan koordinat spatial kepada nilai piksel. Dengan perwakilan adegan yang eksplisit dan algoritma pemaparan yang boleh dibezakan, 3DGS bukan sahaja menjamin keupayaan pemaparan masa nyata, tetapi juga memperkenalkan tahap kawalan dan pengeditan adegan yang tidak pernah berlaku sebelum ini. Ini meletakkan 3DGS sebagai penukar permainan yang berpotensi untuk pembinaan semula dan perwakilan 3D generasi akan datang. Untuk tujuan ini, kami menyediakan gambaran keseluruhan sistematik tentang perkembangan dan kebimbangan terkini dalam bidang 3DGS buat kali pertama.

Semalam semasa temu bual, saya telah ditanya sama ada saya telah membuat sebarang soalan berkaitan ekor panjang, jadi saya fikir saya akan memberikan ringkasan ringkas. Masalah ekor panjang pemanduan autonomi merujuk kepada kes tepi dalam kenderaan autonomi, iaitu, kemungkinan senario dengan kebarangkalian yang rendah untuk berlaku. Masalah ekor panjang yang dirasakan adalah salah satu sebab utama yang kini mengehadkan domain reka bentuk pengendalian kenderaan autonomi pintar satu kenderaan. Seni bina asas dan kebanyakan isu teknikal pemanduan autonomi telah diselesaikan, dan baki 5% masalah ekor panjang secara beransur-ansur menjadi kunci untuk menyekat pembangunan pemanduan autonomi. Masalah ini termasuk pelbagai senario yang berpecah-belah, situasi yang melampau dan tingkah laku manusia yang tidak dapat diramalkan. "Ekor panjang" senario tepi dalam pemanduan autonomi merujuk kepada kes tepi dalam kenderaan autonomi (AVs) kes Edge adalah senario yang mungkin dengan kebarangkalian yang rendah untuk berlaku. kejadian yang jarang berlaku ini

0. Ditulis di hadapan&& Pemahaman peribadi bahawa sistem pemanduan autonomi bergantung pada persepsi lanjutan, membuat keputusan dan teknologi kawalan, dengan menggunakan pelbagai penderia (seperti kamera, lidar, radar, dll.) untuk melihat persekitaran sekeliling dan menggunakan algoritma dan model untuk analisis masa nyata dan membuat keputusan. Ini membolehkan kenderaan mengenali papan tanda jalan, mengesan dan menjejaki kenderaan lain, meramalkan tingkah laku pejalan kaki, dsb., dengan itu selamat beroperasi dan menyesuaikan diri dengan persekitaran trafik yang kompleks. Teknologi ini kini menarik perhatian meluas dan dianggap sebagai kawasan pembangunan penting dalam pengangkutan masa depan satu. Tetapi apa yang menyukarkan pemanduan autonomi ialah memikirkan cara membuat kereta itu memahami perkara yang berlaku di sekelilingnya. Ini memerlukan algoritma pengesanan objek tiga dimensi dalam sistem pemanduan autonomi boleh melihat dan menerangkan dengan tepat objek dalam persekitaran sekeliling, termasuk lokasinya,

Kertas StableDiffusion3 akhirnya di sini! Model ini dikeluarkan dua minggu lalu dan menggunakan seni bina DiT (DiffusionTransformer) yang sama seperti Sora. Ia menimbulkan kekecohan apabila ia dikeluarkan. Berbanding dengan versi sebelumnya, kualiti imej yang dijana oleh StableDiffusion3 telah dipertingkatkan dengan ketara Ia kini menyokong gesaan berbilang tema, dan kesan penulisan teks juga telah dipertingkatkan, dan aksara bercelaru tidak lagi muncul. StabilityAI menegaskan bahawa StableDiffusion3 ialah satu siri model dengan saiz parameter antara 800M hingga 8B. Julat parameter ini bermakna model boleh dijalankan terus pada banyak peranti mudah alih, dengan ketara mengurangkan penggunaan AI

Ramalan trajektori memainkan peranan penting dalam pemanduan autonomi Ramalan trajektori pemanduan autonomi merujuk kepada meramalkan trajektori pemanduan masa hadapan kenderaan dengan menganalisis pelbagai data semasa proses pemanduan kenderaan. Sebagai modul teras pemanduan autonomi, kualiti ramalan trajektori adalah penting untuk kawalan perancangan hiliran. Tugas ramalan trajektori mempunyai timbunan teknologi yang kaya dan memerlukan kebiasaan dengan persepsi dinamik/statik pemanduan autonomi, peta ketepatan tinggi, garisan lorong, kemahiran seni bina rangkaian saraf (CNN&GNN&Transformer), dll. Sangat sukar untuk bermula! Ramai peminat berharap untuk memulakan ramalan trajektori secepat mungkin dan mengelakkan perangkap Hari ini saya akan mengambil kira beberapa masalah biasa dan kaedah pembelajaran pengenalan untuk ramalan trajektori! Pengetahuan berkaitan pengenalan 1. Adakah kertas pratonton teratur? A: Tengok survey dulu, hlm

Tajuk asal: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving Paper pautan: https://arxiv.org/pdf/2402.02519.pdf Pautan kod: https://github.com/HKUST-Aerial-Robotics/SIMPL Unit pengarang: Universiti Sains Hong Kong dan Teknologi Idea Kertas DJI: Kertas kerja ini mencadangkan garis dasar ramalan pergerakan (SIMPL) yang mudah dan cekap untuk kenderaan autonomi. Berbanding dengan agen-sen tradisional

Ditulis di hadapan & titik permulaan Paradigma hujung ke hujung menggunakan rangka kerja bersatu untuk mencapai pelbagai tugas dalam sistem pemanduan autonomi. Walaupun kesederhanaan dan kejelasan paradigma ini, prestasi kaedah pemanduan autonomi hujung ke hujung pada subtugas masih jauh ketinggalan berbanding kaedah tugasan tunggal. Pada masa yang sama, ciri pandangan mata burung (BEV) padat yang digunakan secara meluas dalam kaedah hujung ke hujung sebelum ini menyukarkan untuk membuat skala kepada lebih banyak modaliti atau tugasan. Paradigma pemanduan autonomi hujung ke hujung (SparseAD) tertumpu carian jarang dicadangkan di sini, di mana carian jarang mewakili sepenuhnya keseluruhan senario pemanduan, termasuk ruang, masa dan tugas, tanpa sebarang perwakilan BEV yang padat. Khususnya, seni bina jarang bersatu direka bentuk untuk kesedaran tugas termasuk pengesanan, penjejakan dan pemetaan dalam talian. Di samping itu, berat

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi
