


eBay menggunakan pembelajaran mesin untuk meningkatkan penyenaraian jualan
Penterjemah |. Bugatti
Penilai |. Tambah ke Troli" untuk meningkatkan perkaitan penyenaraian iklan yang disyorkan berdasarkan produk awal yang sedang dicari. Chen Xue memberikan pengenalan yang sangat terperinci dalam artikel terbaru ini
. Standard Penyenaraian Promosi (PLS) eBay ialah pilihan berbayar untuk penjual. Menggunakan pilihan PLSIM, enjin pengesyoran eBay akan mengesyorkan produk tajaan yang serupa dengan produk yang bakal pembeli klik. PLSIM membayar pada model CPA (penjual hanya membayar eBay apabila jualan dibuat), jadi ini adalah insentif yang hebat untuk mencipta model paling cekap untuk mempromosikan penyenaraian terbaik. Ini selalunya berkesan untuk penjual, pembeli dan eBay.
Dari perspektif pembelajaran mesin, perjalanan PLSIM adalah seperti berikut:
Dapatkan subset kriteria senarai kenaikan pangkat calon yang paling rapat berkaitan dengan item benih ("Semak koleksi lengkap").
- Gunakan pengisih pembelajaran mesin terlatih untuk mengisih senarai produk dalam set carian berdasarkan kemungkinan pembelian.
- Susun semula senarai produk berdasarkan kadar pengiklanan untuk mengimbangi kelajuan jualan penjual yang dicapai melalui promosi dengan perkaitan cadangan.
- Model penarafan
Data produk yang disyorkan
- Produk yang disyorkan serupa kepada produk benih
- Konteks (Negara dan Kategori Produk)
- Ciri Pemperibadian Pengguna
- eBay menggunakan pokok penggalak kecerunan yang, untuk item benih tertentu, Isih item berdasarkan kebarangkalian pembelian relatif mereka.
Negatif Palsu: Memandangkan pengguna biasanya hanya membeli satu item daripada senarai yang disyorkan, pembelian tidak berlaku apabila pembelian tidak dibuat Dalam sesetengah kes, pengesyoran yang baik boleh dilihat sebagai pengesyoran yang tidak baik, yang membawa kepada positif palsu.
- Beberapa pembelian: Berbanding dengan acara pengguna lain, melatih model dengan bilangan dan kepelbagaian pembelian yang mencukupi untuk meramalkan kelas hadapan menjadi mencabar.
- Data Tiada: Daripada klik untuk ditambahkan pada troli, banyak tindakan pengguna mendedahkan banyak maklumat pengguna, mendedahkan hasil yang mungkin.
- Untuk meringkaskan, jurutera eBay mempertimbangkan tindakan pengguna berikut sebagai tambahan kepada klik awal dan cara menambahkannya pada model kedudukan:
Beli Sekarang (hanya terpakai Pada Belian -It-Now iaitu Penyenaraian BIN)
- Tambah ke Troli (Penyenaraian BIN Sahaja)
- Bida (Penyenaraian Bidaan Terbaik Sahaja)
- Harga Tanya (Terpakai untuk Penyenaraian Lelong sahaja)
- Tambahkan pada Senarai Pantauan (Digunakan untuk BIN, Bidaan Terbaik atau Penyenaraian Lelong)
Contoh Antara Muka Pengguna
Dalam data latihan sejarah produk benih, setiap produk berpotensi dilabelkan dengan tahap perkaitan berikut. Hasil daripada teg
Berat sampel untuk maklum balas berbilang korelasi
Pokok yang dirangsang kecerunan menyokong berbilang label untuk menangkap julat korelasi, tetapi tidak ada cara langsung untuk mencapai magnitud korelasi.
eBay terpaksa menjalankan ujian secara berulang sehingga ia menghasilkan nombor yang menjadikan model itu berfungsi. Para penyelidik menambah pemberat tambahan (dipanggil "berat sampel") yang dimasukkan ke dalam fungsi kehilangan berpasangan. Mereka mengoptimumkan penalaan hiperparameter dan menjalankannya selama 25 lelaran sebelum mencapai pemberat sampel terbaik - "Tambah pada Senarai Pantauan" (6), "Tambah ke Troli" (15), "Bida" (38 ), "Beli Sekarang" (8 ) dan "Beli" (15). Tanpa berat sampel, model baharu akan berprestasi lebih teruk. Dengan berat sampel, model baharu mengatasi model binari.
Mereka cuba menambah hanya klik sebagai maklum balas tambahan yang berkaitan dan menggunakan berat sampel "Beli" hiperparameter yang ditala sebanyak 150. Keputusan luar talian juga ditunjukkan di bawah, dengan "BOWC" bermaksud Beli Sekarang, Buat Bidaan, Tambah pada Senarai Pantau dan Tindakan Tambah ke Troli. Kedudukan pembelian mencerminkan kedudukan purata item yang dibeli. Lebih kecil, lebih baik.
Kesimpulan
Model terlatih mempunyai jumlah lebih daripada 2000 contoh. Ujian A/B dijalankan dalam dua peringkat. Fasa pertama, yang hanya memasukkan teg terpilih tambahan dan menunjukkan peningkatan 2.97% dalam volum pembelian pada apl mudah alih eBay dan peningkatan 2.66% dalam hasil iklan, dianggap cukup berjaya untuk memindahkan model itu ke dalam pengeluaran global.
Fasa kedua menambahkan lebih banyak tindakan pada model, seperti "Tambahkan pada Senarai Pantau", "Tambahkan ke Troli", "Bida" dan "Beli Sekarang", dan ujian A/B menunjukkan penglibatan pelanggan yang lebih baik (cth. lebih banyak klik dan BWC).
Tajuk asal: EBay Menggunakan Pembelajaran Mesin untuk Memperhalusi Penyenaraian Digalakkan, Pengarang: Jessica Wachtel
Atas ialah kandungan terperinci eBay menggunakan pembelajaran mesin untuk meningkatkan penyenaraian jualan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Menghadapi ketinggalan, sambungan data mudah alih perlahan pada iPhone? Biasanya, kekuatan internet selular pada telefon anda bergantung pada beberapa faktor seperti rantau, jenis rangkaian selular, jenis perayauan, dsb. Terdapat beberapa perkara yang boleh anda lakukan untuk mendapatkan sambungan Internet selular yang lebih pantas dan boleh dipercayai. Betulkan 1 – Paksa Mulakan Semula iPhone Kadangkala, paksa memulakan semula peranti anda hanya menetapkan semula banyak perkara, termasuk sambungan selular. Langkah 1 – Hanya tekan kekunci naikkan kelantangan sekali dan lepaskan. Seterusnya, tekan kekunci Turun Kelantangan dan lepaskannya semula. Langkah 2 - Bahagian seterusnya proses adalah untuk menahan butang di sebelah kanan. Biarkan iPhone selesai dimulakan semula. Dayakan data selular dan semak kelajuan rangkaian. Semak semula Betulkan 2 – Tukar mod data Walaupun 5G menawarkan kelajuan rangkaian yang lebih baik, ia berfungsi lebih baik apabila isyarat lemah

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Saya menangis hingga mati. Dunia sedang membina model besar. Data di Internet tidak mencukupi. Model latihan kelihatan seperti "The Hunger Games", dan penyelidik AI di seluruh dunia bimbang tentang cara memberi makan data ini kepada pemakan yang rakus. Masalah ini amat ketara dalam tugas berbilang modal. Pada masa mereka mengalami kerugian, pasukan pemula dari Jabatan Universiti Renmin China menggunakan model baharu mereka sendiri untuk menjadi yang pertama di China untuk menjadikan "suapan data yang dijana model itu sendiri" menjadi kenyataan. Selain itu, ia merupakan pendekatan serampang dua mata dari segi pemahaman dan sisi penjanaan Kedua-dua pihak boleh menjana data baharu berbilang modal yang berkualiti tinggi dan memberikan maklum balas data kepada model itu sendiri. Apakah model? Awaker 1.0, model berbilang modal besar yang baru sahaja muncul di Forum Zhongguancun. Siapa pasukan itu? Enjin Sophon. Diasaskan oleh Gao Yizhao, pelajar kedoktoran di Sekolah Kecerdasan Buatan Hillhouse Universiti Renmin.

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

Baru-baru ini, bulatan tentera telah terharu dengan berita: jet pejuang tentera AS kini boleh melengkapkan pertempuran udara automatik sepenuhnya menggunakan AI. Ya, baru-baru ini, jet pejuang AI tentera AS telah didedahkan buat pertama kali, mendedahkan misterinya. Nama penuh pesawat pejuang ini ialah Variable Stability Simulator Test Aircraft (VISTA). Ia diterbangkan sendiri oleh Setiausaha Tentera Udara AS untuk mensimulasikan pertempuran udara satu lawan satu. Pada 2 Mei, Setiausaha Tentera Udara A.S. Frank Kendall berlepas menggunakan X-62AVISTA di Pangkalan Tentera Udara Edwards Ambil perhatian bahawa semasa penerbangan selama satu jam, semua tindakan penerbangan telah diselesaikan secara autonomi oleh AI! Kendall berkata - "Sejak beberapa dekad yang lalu, kami telah memikirkan tentang potensi tanpa had pertempuran udara-ke-udara autonomi, tetapi ia sentiasa kelihatan di luar jangkauan." Namun kini,

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat
