


Artikel yang menerangkan jenis data asas modul analisis data Python Numpy secara terperinci
Pengenalan kepada Numpy
NumPy (Numerical Python) ialah perpustakaan sambungan bahasa Python yang menyokong sejumlah besar operasi tatasusunan dan matriks Di samping itu, ia juga menyediakan sejumlah besar fungsi matematik perpustakaan untuk operasi tatasusunan.
NumPy ialah perpustakaan matematik yang sangat pantas, terutamanya digunakan untuk pengiraan tatasusunan, termasuk:
- Objek Array N-dimensi yang berkuasa ndarray
- Fungsi fungsi penyiaran
- Alat untuk menyepadukan kod C/C++/Fortran
- Algebra linear, Transformasi Fourier, penjanaan nombor rawak dan fungsi lain
objek NumPy Ndarray
- Salah satu ciri terpenting NumPy ialah objek tatasusunan N Dimensinya ndarray, iaitu koleksi siri data jenis yang sama Indeks elemen dalam koleksi bermula dengan 0 subskrip
- objek ndarray ialah tatasusunan berbilang dimensi yang digunakan untuk. menyimpan elemen dari jenis yang sama. :
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)
objek | ||
dtype | ||
salin | ||
pesanan | ||
subok | Mengembalikan tatasusunan yang konsisten dengan jenis kelas asas secara lalai | |
ndmin | Nyatakan dimensi minimum tatasusunan yang dijana |
Penukaran jenis data
Salin
Dimensi minimum
subok
Jenis data NumPy
Nama | Penerangan |
bool_ | Jenis data Boolean (Benar atau Salah ) |
int_ | Jenis integer lalai ( Serupa dengan long, int32 atau int64 dalam bahasa C) |
intc | adalah sama dengan jenis int C, biasanya int32 atau int 64 |
intp | Jenis integer digunakan untuk pengindeksan (serupa dengan ssize_t C, biasanya masih int32 atau int64) |
int8 <🎜><🎜> | Bait (-128 hingga 127) |
int16 | int32 |
Integer (-2147483648 hingga 2147483647) <🎜 | int64 |
uint8 | Integer tak bertanda (0 hingga 255) |
uint16 | Integer tak bertanda (0 hingga 65535) |
uint32 | Integer tidak ditandatangani (0 hingga 4294967295) |
uint64 | Integer tidak ditandatangani (0 hingga 18446744073709551615)<🎜 |
float_ | Singkatan untuk jenis float64 |
float16 | Nombor titik terapung separuh ketepatan, termasuk: 1 bit tanda, 5 bit eksponen , 10 digit mantissa |
float32 | single precision Terapung nombor titik, termasuk: 1 bit tanda, 8 bit eksponen, 23 bit mantissa |
float64 | Nombor titik terapung berketepatan ganda, termasuk: 1 bit tanda, 11 bit eksponen, 52 bit mantissa |
kompleks_ | Singkatan jenis complex128, iaitu nombor kompleks 128-bit |
kompleks64 | Nombor kompleks, mewakili nombor titik terapung 32-bit berganda (bahagian nyata dan bahagian khayalan) |
kompleks128 | Nombor kompleks, mewakili titik terapung berganda 64-bit nombor (bahagian sebenar dan bahagian khayalan ) |
数据类型对象 (dtype)
数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面:
- 数据的类型(整数,浮点数或者 Python 对象)
- 数据的大小(例如, 整数使用多少个字节存储)
- 数据的字节顺序(小端法或大端法)
- 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
- 如果数据类型是子数组,那么它的形状和数据类型是什么。
字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。
dtype 对象是使用以下语法构造的:
numpy.dtype(object, align, copy) object - 要转换为的数据类型对象 align - 如果为 true,填充字段使其类似 C 的结构体。 copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用
每个内建类型都有一个唯一定义它的字符代码
字符 | 对应类型 |
b | 布尔型 |
i | (有符号) 整型 |
u | 无符号整型 integer |
f | 浮点型 |
c | 复数浮点型 |
m | timedelta(时间间隔) |
M | datetime(日期时间) |
O | (Python) 对象 |
S, a | (byte-)字符串 |
U | Unicode |
V | 原始数据 (void) |
dt = np.dtype(np.int32) print(dt) 输出: int32 dt = np.dtype('i4') print(dt) 输出: int32 dt = np.dtype([('age', np.int8)]) print(dt) 输出: [('age', 'i1')]
结构化数据类型
student = np.dtype([('name','S20'), ('age','i1'), ('score', 'f4')]) a = np.array([('xm', 10, 98.123456789), ('xh', 8, 99.111111111), ('xl', '9', 100)], dtype=student) print(a) 输出: [(b'xm', 10,98.12346 ) (b'xh',8,99.111115) (b'xl',9, 100.)]
Atas ialah kandungan terperinci Artikel yang menerangkan jenis data asas modul analisis data Python Numpy secara terperinci. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Latihan yang cekap model pytorch pada sistem CentOS memerlukan langkah -langkah, dan artikel ini akan memberikan panduan terperinci. 1. Penyediaan Persekitaran: Pemasangan Python dan Ketergantungan: Sistem CentOS biasanya mempamerkan python, tetapi versi mungkin lebih tua. Adalah disyorkan untuk menggunakan YUM atau DNF untuk memasang Python 3 dan menaik taraf PIP: Sudoyumupdatepython3 (atau SudodnfupdatePython3), pip3install-upgradepip. CUDA dan CUDNN (Percepatan GPU): Jika anda menggunakan Nvidiagpu, anda perlu memasang Cudatool

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Apabila memilih versi pytorch di bawah CentOS, faktor utama berikut perlu dipertimbangkan: 1. Keserasian versi CUDA Sokongan GPU: Jika anda mempunyai NVIDIA GPU dan ingin menggunakan pecutan GPU, anda perlu memilih pytorch yang menyokong versi CUDA yang sepadan. Anda boleh melihat versi CUDA yang disokong dengan menjalankan arahan NVIDIA-SMI. Versi CPU: Jika anda tidak mempunyai GPU atau tidak mahu menggunakan GPU, anda boleh memilih versi CPU PyTorch. 2. Pytorch versi python

Penyimpanan Objek Minio: Penyebaran berprestasi tinggi di bawah CentOS System Minio adalah prestasi tinggi, sistem penyimpanan objek yang diedarkan yang dibangunkan berdasarkan bahasa Go, serasi dengan Amazons3. Ia menyokong pelbagai bahasa pelanggan, termasuk Java, Python, JavaScript, dan GO. Artikel ini akan memperkenalkan pemasangan dan keserasian minio pada sistem CentOS. Keserasian versi CentOS Minio telah disahkan pada pelbagai versi CentOS, termasuk tetapi tidak terhad kepada: CentOS7.9: Menyediakan panduan pemasangan lengkap yang meliputi konfigurasi kluster, penyediaan persekitaran, tetapan fail konfigurasi, pembahagian cakera, dan mini

CentOS Memasang Nginx memerlukan mengikuti langkah-langkah berikut: memasang kebergantungan seperti alat pembangunan, pcre-devel, dan openssl-devel. Muat turun Pakej Kod Sumber Nginx, unzip dan menyusun dan memasangnya, dan tentukan laluan pemasangan sebagai/usr/local/nginx. Buat pengguna Nginx dan kumpulan pengguna dan tetapkan kebenaran. Ubah suai fail konfigurasi nginx.conf, dan konfigurasikan port pendengaran dan nama domain/alamat IP. Mulakan perkhidmatan Nginx. Kesalahan biasa perlu diberi perhatian, seperti isu ketergantungan, konflik pelabuhan, dan kesilapan fail konfigurasi. Pengoptimuman prestasi perlu diselaraskan mengikut keadaan tertentu, seperti menghidupkan cache dan menyesuaikan bilangan proses pekerja.
