


Stanford dan Microsoft bekerjasama untuk menggunakan model resapan untuk menjana struktur protein, yang telah menjadi sumber terbuka
Protein adalah penting untuk kehidupan dan memainkan peranan dalam hampir setiap proses biologi. Di satu pihak, mereka boleh menghantar isyarat antara neuron, mengenal pasti penceroboh mikroskopik, dan mengaktifkan tindak balas imun. Sebaliknya, protein telah dikaji secara meluas sebagai mediator terapeutik sebagai sebahagian daripada rawatan penyakit. Oleh itu, dengan menghasilkan struktur protein baharu yang boleh dilipat secara fizikal, pintu dibuka kepada cara baharu untuk mengeksploitasi laluan selular untuk merawat penyakit.
Dalam artikel ini, penyelidik dari Universiti Stanford, Microsoft Research dan institusi lain, yang diilhamkan oleh proses lipatan protein dalam vivo, memperkenalkan model resapan lipat (folding diffusion, FoldingDiff)), yang mereka bentuk struktur tulang belakang protein dengan mencerminkan proses lipatan semula jadi protein.
- Alamat kertas: https://arxiv .org/pdf/2209.15611.pdf
- Alamat kod: https://github.com/microsoft/foldingdiff
Secara khusus, mereka menerangkan struktur tulang belakang protein sebagai satu siri sudut berturut-turut untuk menangkap orientasi relatif sisa-sisa asid amino konstituen, yang The intrinsik anjakan dan invarian putaran perwakilan ini sangat mengurangkan keperluan untuk rangkaian setara yang kompleks.
Kajian ini melatih model probabilistik resapan ternyah berdasarkan tulang belakang pengubah dan menunjukkan bahawa model kami tanpa syarat boleh menjana struktur protein yang sangat realistik dengan kerumitan dan corak struktur yang serupa dengan protein semula jadi.
Sesetengah netizen berkata: Saya tertanya-tanya jika model ini akan membawa beberapa persaingan kepada AlphaFold.
Kaedah dan keputusan
Kita boleh memahami protein sebagai rantaian sisa asid amino dengan panjang berubah-ubah spesies, berkongsi tulang belakang N-C_α-C tiga atom yang sama, tetapi dengan rantai sisi berbeza yang disambungkan kepada atom C_α (biasanya dilambangkan sebagai R, lihat Rajah 1).
Sisa-sisa ini berhimpun untuk membentuk rantai polimer yang terlipat menjadi struktur 3D, bentuk yang sebahagian besarnya menentukan fungsi protein. Struktur terlipat ini boleh diterangkan dalam empat peringkat:
- struktur utama, yang hanya menangkap jujukan linear asid amino
- Struktur sekunder, menerangkan susunan tempatan asid amino; menerangkan bagaimana pelbagai rantai asid amino yang berbeza bergabung untuk membentuk kompleks yang lebih besar.
- Kajian ini mencadangkan rangka kerja tulang belakang protein dipermudah yang mengikuti proses biologi lipatan protein sambil menghapuskan keperluan untuk rangkaian setara yang kompleks. Daripada melihat tulang belakang protein, N asid amino panjangnya, sebagai koordinat tiga dimensi, mereka melihatnya sebagai urutan enam sudut dalaman, berturut-turut. Iaitu, memandangkan kedudukan sisa semasa, vektor enam sudut pedalaman menerangkan kedudukan relatif semua atom tulang belakang dalam baki seterusnya. Sudut dalaman ini boleh dikira dengan mudah menggunakan fungsi trigonometri, menambah atom secara berulang pada tulang belakang protein dan kemudian menukar kembali kepada koordinat Cartesan 3D.
Gambar di bawah menunjukkan keputusan percubaan. Gambar rajah Ramachandran bagi struktur semula jadi (rajah a) mengandungi tiga kawasan yang sepadan dengan LH α-helix, RH α-helix, dan β-sheet. Ketiga-tiga rantau ini dihasilkan semula sepenuhnya dalam struktur yang dihasilkan di sini (Rajah 3b). Dengan kata lain, FoldingDiff mampu menjana elemen struktur sekunder dalam tulang belakang protein. Selain itu, eksperimen menunjukkan bahawa model FoldingDiff mengetahui dengan betul bahawa RH α-heliks adalah lebih biasa daripada LH α-heliks. Kerja sebelumnya menggunakan rangkaian setara tidak dapat membezakan antara kedua-dua jenis lingkaran ini.
Gambar di bawah menunjukkan struktur sekunder dalam rantai utama ujian (4a) dan rantai utama yang dijana (4b) Dua -histogram dimensi, keputusan menunjukkan bahawa struktur yang dijana mencerminkan struktur sebenar protein, dengan berbilang α-heliks, berbilang helaian β, dan campuran kedua-duanya.
Rajah di bawah menunjukkan bahawa 111 daripada 780 struktur yang dijana (14.2%) boleh direka bentuk, dan skor scTMnya ≥0.5 (Rajah 5a) , iaitu lebih tinggi daripada nilai 11.8% yang dilaporkan oleh Trippe et al. Kami juga melihat bahawa rantai utama yang dihasilkan lebih serupa dengan contoh latihan dan cenderung mempunyai kebolehreka bentuk yang lebih baik (5b).
Untuk maklumat lanjut, sila baca kertas asal.
Atas ialah kandungan terperinci Stanford dan Microsoft bekerjasama untuk menggunakan model resapan untuk menjana struktur protein, yang telah menjadi sumber terbuka. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

AI memang mengubah matematik. Baru-baru ini, Tao Zhexuan, yang telah mengambil perhatian terhadap isu ini, telah memajukan keluaran terbaru "Buletin Persatuan Matematik Amerika" (Buletin Persatuan Matematik Amerika). Memfokuskan pada topik "Adakah mesin akan mengubah matematik?", ramai ahli matematik menyatakan pendapat mereka Seluruh proses itu penuh dengan percikan api, tegar dan menarik. Penulis mempunyai barisan yang kuat, termasuk pemenang Fields Medal Akshay Venkatesh, ahli matematik China Zheng Lejun, saintis komputer NYU Ernest Davis dan ramai lagi sarjana terkenal dalam industri. Dunia AI telah berubah secara mendadak Anda tahu, banyak artikel ini telah dihantar setahun yang lalu.

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Prestasi JAX, yang dipromosikan oleh Google, telah mengatasi Pytorch dan TensorFlow dalam ujian penanda aras baru-baru ini, menduduki tempat pertama dalam 7 penunjuk. Dan ujian tidak dilakukan pada TPU dengan prestasi JAX terbaik. Walaupun dalam kalangan pembangun, Pytorch masih lebih popular daripada Tensorflow. Tetapi pada masa hadapan, mungkin lebih banyak model besar akan dilatih dan dijalankan berdasarkan platform JAX. Model Baru-baru ini, pasukan Keras menanda aras tiga hujung belakang (TensorFlow, JAX, PyTorch) dengan pelaksanaan PyTorch asli dan Keras2 dengan TensorFlow. Pertama, mereka memilih satu set arus perdana

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

Teknologi pengesanan dan pengecaman muka adalah teknologi yang agak matang dan digunakan secara meluas. Pada masa ini, bahasa aplikasi Internet yang paling banyak digunakan ialah JS Melaksanakan pengesanan muka dan pengecaman pada bahagian hadapan Web mempunyai kelebihan dan kekurangan berbanding dengan pengecaman muka bahagian belakang. Kelebihan termasuk mengurangkan interaksi rangkaian dan pengecaman masa nyata, yang sangat memendekkan masa menunggu pengguna dan meningkatkan pengalaman pengguna termasuk: terhad oleh saiz model, ketepatannya juga terhad. Bagaimana untuk menggunakan js untuk melaksanakan pengesanan muka di web? Untuk melaksanakan pengecaman muka di Web, anda perlu biasa dengan bahasa dan teknologi pengaturcaraan yang berkaitan, seperti JavaScript, HTML, CSS, WebRTC, dll. Pada masa yang sama, anda juga perlu menguasai visi komputer yang berkaitan dan teknologi kecerdasan buatan. Perlu diingat bahawa kerana reka bentuk bahagian Web

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh
