Cara menggunakan pembelajaran mesin untuk menganalisis sentimen
Kami menggunakan algoritma pembelajaran mesin yang berbeza untuk analisis sentimen, dan kemudian membandingkan keputusan ketepatan setiap algoritma untuk menentukan algoritma yang paling sesuai untuk masalah ini.
Analisis sentimen ialah kandungan penting dalam pemprosesan bahasa semula jadi (NLP). Emosi ialah perasaan yang kita ada tentang sesuatu peristiwa, objek, situasi, atau perkara. Analisis sentimen ialah bidang penyelidikan yang secara automatik mengekstrak emosi manusia daripada teks. Ia perlahan-lahan mula berkembang pada awal 90-an.
Artikel ini akan membolehkan anda memahami cara menggunakan pembelajaran mesin (ML) untuk analisis sentimen dan membandingkan hasil algoritma pembelajaran mesin yang berbeza. Matlamat artikel ini bukan untuk mengkaji cara meningkatkan prestasi algoritma.
Kini, kita hidup dalam masyarakat yang serba pantas, semua barangan boleh dibeli dalam talian, dan semua orang boleh menyiarkan ulasan mereka sendiri dalam talian. Dan ulasan negatif dalam talian terhadap sesetengah produk boleh merosakkan reputasi syarikat, sekali gus menjejaskan jualan syarikat. Oleh itu, menjadi sangat penting bagi syarikat untuk menggunakan ulasan produk untuk memahami perkara yang benar-benar mahukan pelanggan. Walau bagaimanapun, terdapat terlalu banyak data ulasan, dan adalah mustahil untuk melihat semua ulasan secara manual satu per satu. Ini adalah bagaimana analisis sentimen dilahirkan.
Sekarang, mari lihat cara menggunakan pembelajaran mesin untuk membangunkan model bagi melaksanakan analisis sentimen asas.
Mulakan sekarang!
Mendapatkan Data
Langkah pertama ialah memilih set data. Anda boleh memilih daripada mana-mana ulasan awam, seperti tweet atau ulasan filem. Set data mesti mengandungi sekurang-kurangnya dua lajur: label dan segmen teks sebenar.
Rajah di bawah menunjukkan sebahagian daripada set data yang kami pilih.
Rajah 1: Sampel data
Seterusnya, kami mengimport perpustakaan yang diperlukan:
import pandas as pd import numpy as np from nltk.stem.porter import PorterStemmer import re import string
Sebagai anda boleh lihat dalam kod di atas, kami mengimport perpustakaan NumPy
dan Pandas
untuk memproses data. Bagi perpustakaan lain, kami akan menerangkannya apabila ia digunakan.
Dataset telah sedia dan pustaka yang diperlukan telah diimport. Seterusnya, kami perlu menggunakan perpustakaan Pandas
untuk membaca set data ke dalam projek kami. Kami menggunakan kod berikut untuk membaca set data ke dalam Pandas DataFrame
sentiment_dataframe = pd.read_csv(“/content/drive/MyDrive/Data/sentiments - sentiments.tsv”,sep = ‘t’)
Pemprosesan Data
Sekarang set data telah diimport ke dalam projek kami. Kami kemudian memproses data supaya algoritma dapat memahami dengan lebih baik ciri-ciri set data. Kami mula-mula menamakan lajur dalam set data, yang dilakukan dengan kod berikut:
sentiment_dataframe.columns = [“label”,”body_text”]
Kemudian, kami menomborkan lajur label
: Gantikan ulasan negative
dengan 1 , Ulasan positive
digantikan dengan 0. Imej di bawah menunjukkan nilai sentiment_dataframe
selepas pengubahsuaian asas.
Rajah 2: Bingkai data dengan pengubahsuaian asas
Sediakan nilai ciri dan nilai sasaran
Seterusnya langkah Ia adalah prapemprosesan data. Ini adalah langkah yang sangat penting, kerana algoritma pembelajaran mesin hanya boleh memahami/memproses data berangka, tetapi bukan teks Oleh itu, pengekstrakan ciri diperlukan pada masa ini untuk menukar rentetan/teks kepada data berangka. Selain itu, data yang berlebihan dan tidak berguna perlu dialih keluar kerana data ini mungkin mencemarkan model terlatih kami. Kami mengalih keluar data bising, data nilai tiada dan data tidak konsisten dalam langkah ini.
对于情感分析,我们在数据帧中添加特征文本的长度和标点符号计数。我们还要进行词干提取,即将所有相似词(如 “give”、“giving” 等)转换为单一形式。完成后,我们将数据集分为两部分:特征值 X 和 目标值 Y。
上述内容是使用以下代码完成的。下图显示了执行这些步骤后的数据帧。
Figure 3: Data frame after the division of the data set
def count_punct(text): count = sum([1 for char in text if char in string.punctuation]) return round(count/(len(text) - text.count(“ “)),3)*100 tokenized_tweet = sentiment_dataframe[‘body_text’].apply(lambda x: x.split()) stemmer = PorterStemmer() tokenized_tweet = tokenized_tweet.apply(lambda x: [stemmer.stem(i) for i in x]) for i in range(len(tokenized_tweet)): tokenized_tweet[i] = ‘ ‘.join(tokenized_tweet[i]) sentiment_dataframe[‘body_text’] = tokenized_tweet sentiment_dataframe[‘body_len’] = sentiment_dataframe[‘body_text’].apply(lambda x:len(x) - x.count(“ “)) sentiment_dataframe[‘punct%’] = sentiment_dataframe[‘body_text’].apply(lambda x:count_punct(x)) X = sentiment_dataframe[‘body_text’] y = sentiment_dataframe[‘label’]
特征工程:文本特征处理
我们接下来进行文本特征抽取,对文本特征进行数值化。为此,我们使用计数向量器CountVectorizer,它返回词频矩阵。
在此之后,计算数据帧 X 中的文本长度和标点符号计数等特征。X 的示例如下图所示。
Figure 4: Sample of final features
使用的机器学习算法
现在数据已经可以训练了。下一步是确定使用哪些算法来训练模型。如前所述,我们将尝试多种机器学习算法,并确定最适合情感分析的算法。由于我们打算对文本进行二元分类,因此我们使用以下算法:
- K-近邻算法(KNN)
- 逻辑回归算法
- 支持向量机(SVMs)
- 随机梯度下降(SGD)
- 朴素贝叶斯算法
- 决策树算法
- 随机森林算法
划分数据集
首先,将数据集划分为训练集和测试集。使用 sklearn
库,详见以下代码:
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.20, random_state = 99)
我们使用 20% 的数据进行测试,80% 的数据用于训练。划分数据的意义在于对一组新数据(即测试集)评估我们训练的模型是否有效。
K-近邻算法
现在,让我们开始训练第一个模型。首先,我们使用 KNN 算法。先训练模型,然后再评估模型的准确率(具体的代码都可以使用 Python 的 sklearn
库来完成)。详见以下代码,KNN 训练模型的准确率大约为 50%。
from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=3) model.fit(X_train, y_train) model.score (X_test,y_test) 0.5056689342403629
逻辑回归算法
逻辑回归模型的代码十分类似——首先从库中导入函数,拟合模型,然后对模型进行评估。下面的代码使用逻辑回归算法,准确率大约为 66%。
from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit (X_train,y_train) model.score (X_test,y_test) 0.6621315192743764
支持向量机算法
以下代码使用 SVM,准确率大约为 67%。
from sklearn import svm model = svm.SVC(kernel=’linear’) model.fit(X_train, y_train) model.score(X_test,y_test) 0.6780045351473923
随机森林算法
以下的代码使用了随机森林算法,随机森林训练模型的准确率大约为 69%。
from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model.fit(X_train, y_train) model.score(X_test,y_test) 0.6938775510204082
决策树算法
接下来,我们使用决策树算法,其准确率约为 61%。
from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() model = model.fit(X_train,y_train) model.score(X_test,y_test) 0.6190476190476191
随机梯度下降算法
以下的代码使用随机梯度下降算法,其准确率大约为 49%。
from sklearn.linear_model import SGDClassifier model = SGDClassifier() model = model.fit(X_train,y_train) model.score(X_test,y_test) 0.49206349206349204
朴素贝叶斯算法
以下的代码使用朴素贝叶斯算法,朴素贝叶斯训练模型的准确率大约为 60%。
from sklearn.naive_bayes import GaussianNB model = GaussianNB() model.fit(X_train, y_train) model.score(X_test,y_test) 0.6009070294784581
情感分析的最佳算法
接下来,我们绘制所有算法的准确率图。如下图所示。
Figure 5: Accuracy performance of the different algorithms
可以看到,对于情感分析这一问题,随机森林算法有最佳的准确率。由此,我们可以得出结论,随机森林算法是所有机器算法中最适合情感分析的算法。我们可以通过处理得到更好的特征、尝试其他矢量化技术、或者使用更好的数据集或更好的分类算法,来进一步提高准确率。
既然,随机森林算法是解决情感分析问题的最佳算法,我将向你展示一个预处理数据的样本。在下图中,你可以看到模型会做出正确的预测!试试这个来改进你的项目吧!
Rajah 6: Sampel ramalan dibuat
Atas ialah kandungan terperinci Cara menggunakan pembelajaran mesin untuk menganalisis sentimen. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada
