


Tesla menggunakan kecerdasan buatan untuk meningkatkan pemanduan autonomi
Tesla berkata pada persidangan pelaburnya minggu lepas bahawa keupayaan pemanduan sendiri akan dipertingkatkan dengan ketara sebaik sahaja superkomputer Dojo ditambahkan pada infrastruktur pengkomputeran berprestasi tingginya.
Pengarah perisian Tesla Autopilot Ashok Elluswamy berkata semasa ucapan pada persidangan Hari Pelabur bahawa menjalankan Perisian FSD (memandu sendiri sepenuhnya)- kenderaan Tesla berasaskan (kini sekitar 400,000 pelanggan) akan dapat membuat keputusan memandu sendiri yang lebih bijak melalui peningkatan perkakasan, yang akan meningkatkan keupayaan kecerdasan buatan (AI) keseluruhan.
Syarikat pada masa ini mempunyai sistem kecerdasan buatan yang mengumpul data visual daripada lapan kamera di atas kapal dalam masa nyata dan menjana output 3D yang mengenal pasti halangan dan pergerakan, kenderaan, jalan raya dan lalu lintas mereka. lampu dan tugas pemodelan yang membantu kereta membuat keputusan.
Tesla melombong rangkaian keretanya untuk mendapatkan lebih banyak data visual dan memasukkannya ke dalam model latihan. Model latihan untuk terus belajar untuk menyelesaikan masalah baharu membantu AI lebih memahami corak di jalan raya. Melalui peningkatan perisian FSD, pengetahuan baharu dimasukkan ke dalam kereta.
"Jika kami menjalankan dan mengulangi proses ini, ia menjadi lebih baik dan lebih baik," kata Elluswamy "Penyelesaian kepada FSD boleh skala adalah untuk mendapatkan seni bina, data dan pengiraan dengan tepat, Kami telah mengumpulkan pasukan bertaraf dunia untuk melaksanakan kerja ini dan mereka membawa ketiga-tiga usaha ini ke hadapan." membeli lebih daripada 360,000 kenderaan. Syarikat itu menyediakan pembaikan perisian melalui kemas kini melalui udara. Pelanggan Tesla boleh membeli FSD bermula pada $99 sebulan. Sesetengah pelanggan dengan model Tesla yang lebih lama juga perlu membayar tambahan untuk memasang komputer FSD. Elluswamy mendakwa bahawa Tesla dengan FSD masih lima hingga enam kali lebih selamat daripada purata kebangsaan A.S.
Elluswamy berkata: "Sambil kami meningkatkan keselamatan, kebolehpercayaan dan keselesaan sistem kami, mereka boleh membuka kunci operasi tanpa pemandu, membolehkan cara baharu menggunakan kereta dan seterusnya Cara menggunakannya hari ini."
Hari ini, syarikat itu menjalankan sistem AInya pada 14,000 GPU di pusat datanya dan boleh memanfaatkan 30 petabait cache video, yang berkembang kepada 200 petabait. Kira-kira 4,000 GPU digunakan untuk pelabelan automatik, dan baki 10,000 GPU digunakan untuk latihan data kecerdasan buatan.
“Sebaik sahaja kami membawa Dojo (komputer latihan kami) ke dalam ruang ini, semua ini akan meningkat dengan ketara,” kata Elluswamy
The Sistem Dojo adalah berdasarkan cip D1 yang dibangunkan sendiri oleh Tesla, yang boleh memberikan prestasi FP32 22.6 trilion. Ia mempunyai 50 bilion transistor dan 10TBps lebar jalur pada cip, serta 4TBps jalur lebar luar cip.
Satu set cip D1 akan ditempatkan dalam kabinet ExaPOD berketumpatan tinggi, yang akan menyampaikan 1.1 exabait prestasi BFP16 dan CFP8. Komputer FSB on-board Tesla boleh memberikan 150 teraflop prestasi dan digunakan terutamanya untuk inferens.
Ganesh Venkataraman, pengarah kanan perkakasan Tesla, berkata dalam ucapan pada persidangan Hot Chips tahun lepas bahawa Tesla membuat cip D1 kerana keupayaan sedia ada dalam penskalaan GPU dan CPU.
Venkataraman berkata: "Kami melihat banyak kesesakan. Pertama dari segi inferens, itulah sebabnya kami menggunakan komputer FSD. Kemudian kami mula melihat isu skala latihan yang sama, memahami kerja Selepas mengukur... kami boleh mengoptimumkan sistem kami berdasarkan keperluan output.” Penyambungan dilakukan dalam pasca pemprosesan sistem perancangan.
"Ia sangat rapuh dan tidak membawa kepada kejayaan yang ketara," kata Elluswamy.
Sejak beberapa tahun lalu, Tesla telah berubah menjadi "dunia video berbilang kamera." Setiap kenderaan mempunyai lapan kamera yang menyalurkan maklumat visual ke dalam sistem AI, yang kemudiannya menghasilkan ruang keluaran 3D. AI membuat keputusan tentang kehadiran halangan, pergerakannya, lorong, jalan raya dan lampu isyarat, dsb.
Pemodelan tugas melangkaui penglihatan komputer dan menggunakan teknik yang digunakan dalam sistem kecerdasan buatan seperti ChatGPT, termasuk pengubah, modul perhatian dan autoregresi token Pemodelan.
Elluswamy berkata: "Dengan penyelesaian menyeluruh terhadap sistem persepsi, kami benar-benar menghapuskan langkah pasca pemprosesan yang rapuh dan menyediakan output berkualiti tinggi kepada sistem perancangan. Walaupun sistem perancangan tidak statik Ia kini mula menggunakan lebih banyak sistem kecerdasan buatan untuk menyelesaikan masalah ini. keputusan yang lancar dan masa nyata. Elluswamy memberi contoh masa tindak balas 50 milisaat, di mana kereta pandu sendiri boleh membuat keputusan memandu selepas berinteraksi dengan persekitaran sekeliling (termasuk pejalan kaki dan lampu isyarat).
Ini adalah banyak data, dan dalam pengkomputeran tradisional, "setiap data memerlukan 10 milisaat masa pengiraan, yang boleh melebihi 1000 milisaat dengan mudah. Ini tidak boleh diterima." dengan AI, kami membungkus semua itu ke dalam 50 milisaat pengiraan supaya ia boleh berjalan dalam masa nyata," kata Elluswamy. >
Tesla menambah data mentahnya dengan mengumpul data kenderaan pada keadaan jalan yang berbeza dan arah aliran trafik sekitar dunia. Tesla menggunakan algoritma untuk membina semula lorong, sempadan jalan, sekatan jalan, lintasan dan imej lain, yang kemudiannya digunakan sebagai asas untuk membantu kereta mengemudi."Ini dicapai dengan mengumpulkan pelbagai serpihan kereta yang berbeza dalam armada dan menggabungkan semua serpihan menjadi gambaran bersatu dunia di sekeliling kereta itu," kata Elluswamy
Elluswamy berkata: "Setelah kami selesai membina semula asas, kami boleh membina pelbagai simulasi di atas asas untuk menjana pelbagai data yang tidak terhingga untuk latihan Tesla mempunyai Simulator yang berkuasa itu boleh mensintesis cuaca lawan, keadaan pencahayaan, dan juga gerakan objek lain. "Setiap kali kami menambah data, prestasi bertambah baik."
Atas ialah kandungan terperinci Tesla menggunakan kecerdasan buatan untuk meningkatkan pemanduan autonomi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Menurut berita dari laman web ini pada 24 Julai, Ketua Pegawai Eksekutif Tesla Elon Musk (Elon Musk) menyatakan dalam panggilan persidangan pendapatan hari ini bahawa syarikat itu akan menyelesaikan kluster latihan kecerdasan buatan terbesar setakat ini, yang akan dilengkapi dengan 2 Ribu NVIDIA H100 GPU. Musk juga memberitahu pelabur mengenai panggilan pendapatan syarikat bahawa Tesla akan berusaha membangunkan superkomputer Dojonya kerana GPU daripada Nvidia mahal. Tapak ini menterjemah sebahagian daripada ucapan Musk seperti berikut: Jalan untuk bersaing dengan NVIDIA melalui Dojo adalah sukar, tetapi saya fikir kami tidak mempunyai pilihan sekarang. Dari perspektif NVIDIA, mereka pasti akan meningkatkan harga GPU ke tahap yang boleh ditanggung oleh pasaran, tetapi

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas

Menurut berita dari laman web ini pada 5 Julai, GlobalFoundries mengeluarkan kenyataan akhbar pada 1 Julai tahun ini, mengumumkan pemerolehan teknologi power gallium nitride (GaN) Tagore Technology dan portfolio harta intelek, dengan harapan dapat mengembangkan bahagian pasarannya dalam kereta dan Internet of Things dan kawasan aplikasi pusat data kecerdasan buatan untuk meneroka kecekapan yang lebih tinggi dan prestasi yang lebih baik. Memandangkan teknologi seperti AI generatif terus berkembang dalam dunia digital, galium nitrida (GaN) telah menjadi penyelesaian utama untuk pengurusan kuasa yang mampan dan cekap, terutamanya dalam pusat data. Laman web ini memetik pengumuman rasmi bahawa semasa pengambilalihan ini, pasukan kejuruteraan Tagore Technology akan menyertai GLOBALFOUNDRIES untuk membangunkan lagi teknologi gallium nitride. G
