


Betapa pembelajaran mendalam boleh terbukti berguna untuk keselamatan siber
Ancaman serangan siber telah meningkat secara mendadak baru-baru ini, dan langkah tradisional kini nampaknya tidak cukup berkesan.
Disebabkan ini, pembelajaran mendalam dalam keselamatan siber berkembang pesat dan mungkin memegang kunci untuk menyelesaikan semua masalah keselamatan siber.
Aplikasi pembelajaran mendalam dalam keselamatan rangkaian
Industri keselamatan rangkaian menghadapi banyak cabaran, dan teknologi pembelajaran mendalam mungkin menjadi penyelamatnya.
Analisis Tingkah Laku
Untuk mana-mana perusahaan, strategi keselamatan berasaskan pembelajaran mendalam adalah untuk menjejak dan memeriksa aktiviti dan tabiat pengguna. Kerana ia mengatasi mekanisme keselamatan dan kadangkala tidak mencetuskan sebarang isyarat atau makluman, ia lebih sukar untuk dikesan berbanding tingkah laku berniat jahat tradisional yang menyasarkan rangkaian. Sebagai contoh, serangan orang dalam berlaku apabila pekerja menggunakan akses sah mereka untuk tujuan jahat dan bukannya menceroboh sistem dari luar, menjadikan banyak sistem perlindungan rangkaian tidak berkesan dalam menghadapi serangan sedemikian.
Pertahanan yang berkesan terhadap serangan ini ialah Analisis Tingkah Laku Pengguna dan Entiti (UEBA). Selepas tempoh pelarasan, ia boleh mempelajari corak tingkah laku tipikal pekerja dan mengenal pasti aktiviti mencurigakan yang mungkin merupakan serangan orang dalam, seperti mengakses sistem pada masa yang tidak normal, dan akan membunyikan amaran.
Pengesanan Pencerobohan
Sistem Pengesanan dan Pencegahan Pencerobohan (IDS/IPS) mengenal pasti aktiviti rangkaian yang mencurigakan, menghalang penggodam daripada mendapat akses dan memberitahu pengguna. Mereka selalunya mempunyai tandatangan terkenal dan format serangan biasa. Ini membantu melindungi daripada risiko seperti pelanggaran data.
Sebelum ini, algoritma ML mengendalikan operasi ini. Walau bagaimanapun, disebabkan oleh algoritma ini, sistem menjana beberapa positif palsu, yang menjadikan tugas pasukan keselamatan menyusahkan dan menambah keletihan yang sudah berlebihan. Pembelajaran mendalam, rangkaian saraf konvolusi dan rangkaian saraf berulang (RNN) boleh digunakan untuk membangunkan sistem ID/IP yang lebih pintar dengan menganalisis trafik dengan lebih tepat, mengurangkan bilangan makluman palsu dan membantu pasukan keselamatan dalam membezakan aktiviti rangkaian yang berniat jahat daripada yang sah.
Mengendalikan Perisian Hasad
Penyelesaian perisian hasad tradisional, seperti tembok api biasa, menggunakan teknologi pengesanan berasaskan tandatangan untuk mencari perisian hasad. Perniagaan ini mengekalkan pangkalan data risiko yang diketahui, yang sentiasa dikemas kini untuk memasukkan bahaya baharu yang baru-baru ini muncul. Walaupun pendekatan ini berkesan terhadap ancaman asas, pendekatan ini tidak berkesan terhadap ancaman yang lebih kompleks. Algoritma pembelajaran mendalam boleh mengenal pasti ancaman yang lebih kompleks kerana ia tidak bergantung pada ingatan tandatangan yang diketahui dan teknik serangan biasa. Sebaliknya, ia menjadi biasa dengan sistem dan melihat kelakuan aneh yang mungkin merupakan tanda perisian hasad atau aktiviti berniat jahat.
Pemantauan E-mel
Untuk menggagalkan sebarang bentuk jenayah siber, adalah penting untuk memantau akaun e-mel rasmi pekerja. Sebagai contoh, serangan pancingan data sering dilakukan dengan menghantar e-mel kepada pekerja dan mendapatkan maklumat sensitif. Perisian pembelajaran mendalam dan keselamatan siber boleh digunakan untuk mencegah jenis serangan ini. Menggunakan pemprosesan bahasa semula jadi, e-mel boleh disemak untuk sebarang aktiviti yang mencurigakan.
Ringkasan
Automasi adalah penting untuk memerangi pelbagai risiko yang perlu dihadapi oleh perniagaan, tetapi pembelajaran mesin lama yang biasa adalah terlalu terhad dan masih memerlukan banyak penalaan dan penglibatan manusia untuk menghasilkan yang diingini keputusan. Pembelajaran mendalam dalam keselamatan siber melangkaui penambahbaikan dan pembelajaran berterusan supaya ia boleh menjangka bahaya dan menghentikannya sebelum ia berlaku.
Atas ialah kandungan terperinci Betapa pembelajaran mendalam boleh terbukti berguna untuk keselamatan siber. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



BERT ialah model bahasa pembelajaran mendalam pra-latihan yang dicadangkan oleh Google pada 2018. Nama penuh ialah BidirectionalEncoderRepresentationsfromTransformers, yang berdasarkan seni bina Transformer dan mempunyai ciri pengekodan dwiarah. Berbanding dengan model pengekodan sehala tradisional, BERT boleh mempertimbangkan maklumat kontekstual pada masa yang sama semasa memproses teks, jadi ia berfungsi dengan baik dalam tugas pemprosesan bahasa semula jadi. Dwiarahnya membolehkan BERT memahami dengan lebih baik hubungan semantik dalam ayat, dengan itu meningkatkan keupayaan ekspresif model. Melalui kaedah pra-latihan dan penalaan halus, BERT boleh digunakan untuk pelbagai tugas pemprosesan bahasa semula jadi, seperti analisis sentimen, penamaan.

Fungsi pengaktifan memainkan peranan penting dalam pembelajaran mendalam Ia boleh memperkenalkan ciri tak linear ke dalam rangkaian saraf, membolehkan rangkaian belajar dengan lebih baik dan mensimulasikan hubungan input-output yang kompleks. Pemilihan dan penggunaan fungsi pengaktifan yang betul mempunyai kesan penting terhadap prestasi dan hasil latihan rangkaian saraf Artikel ini akan memperkenalkan empat fungsi pengaktifan yang biasa digunakan: Sigmoid, Tanh, ReLU dan Softmax, bermula dari pengenalan, senario penggunaan, kelebihan, kelemahan dan penyelesaian pengoptimuman Dimensi dibincangkan untuk memberi anda pemahaman yang menyeluruh tentang fungsi pengaktifan. 1. Fungsi Sigmoid Pengenalan kepada formula fungsi SIgmoid: Fungsi Sigmoid ialah fungsi tak linear yang biasa digunakan yang boleh memetakan sebarang nombor nyata antara 0 dan 1. Ia biasanya digunakan untuk menyatukan

Ditulis sebelum ini, hari ini kita membincangkan bagaimana teknologi pembelajaran mendalam boleh meningkatkan prestasi SLAM berasaskan penglihatan (penyetempatan dan pemetaan serentak) dalam persekitaran yang kompleks. Dengan menggabungkan kaedah pengekstrakan ciri dalam dan pemadanan kedalaman, di sini kami memperkenalkan sistem SLAM visual hibrid serba boleh yang direka untuk meningkatkan penyesuaian dalam senario yang mencabar seperti keadaan cahaya malap, pencahayaan dinamik, kawasan bertekstur lemah dan seks yang teruk. Sistem kami menyokong berbilang mod, termasuk konfigurasi monokular, stereo, monokular-inersia dan stereo-inersia lanjutan. Selain itu, ia juga menganalisis cara menggabungkan SLAM visual dengan kaedah pembelajaran mendalam untuk memberi inspirasi kepada penyelidikan lain. Melalui percubaan yang meluas pada set data awam dan data sampel sendiri, kami menunjukkan keunggulan SL-SLAM dari segi ketepatan kedudukan dan keteguhan penjejakan.

Pembenaman Ruang Terpendam (LatentSpaceEmbedding) ialah proses memetakan data berdimensi tinggi kepada ruang berdimensi rendah. Dalam bidang pembelajaran mesin dan pembelajaran mendalam, pembenaman ruang terpendam biasanya merupakan model rangkaian saraf yang memetakan data input berdimensi tinggi ke dalam set perwakilan vektor berdimensi rendah ini sering dipanggil "vektor terpendam" atau "terpendam pengekodan". Tujuan pembenaman ruang terpendam adalah untuk menangkap ciri penting dalam data dan mewakilinya ke dalam bentuk yang lebih ringkas dan mudah difahami. Melalui pembenaman ruang terpendam, kami boleh melakukan operasi seperti memvisualisasikan, mengelaskan dan mengelompokkan data dalam ruang dimensi rendah untuk memahami dan menggunakan data dengan lebih baik. Pembenaman ruang terpendam mempunyai aplikasi yang luas dalam banyak bidang, seperti penjanaan imej, pengekstrakan ciri, pengurangan dimensi, dsb. Pembenaman ruang terpendam adalah yang utama

Dalam gelombang perubahan teknologi yang pesat hari ini, Kecerdasan Buatan (AI), Pembelajaran Mesin (ML) dan Pembelajaran Dalam (DL) adalah seperti bintang terang, menerajui gelombang baharu teknologi maklumat. Ketiga-tiga perkataan ini sering muncul dalam pelbagai perbincangan dan aplikasi praktikal yang canggih, tetapi bagi kebanyakan peneroka yang baru dalam bidang ini, makna khusus dan hubungan dalaman mereka mungkin masih diselubungi misteri. Jadi mari kita lihat gambar ini dahulu. Dapat dilihat bahawa terdapat korelasi rapat dan hubungan progresif antara pembelajaran mendalam, pembelajaran mesin dan kecerdasan buatan. Pembelajaran mendalam ialah bidang khusus pembelajaran mesin dan pembelajaran mesin

Hampir 20 tahun telah berlalu sejak konsep pembelajaran mendalam dicadangkan pada tahun 2006. Pembelajaran mendalam, sebagai revolusi dalam bidang kecerdasan buatan, telah melahirkan banyak algoritma yang berpengaruh. Jadi, pada pendapat anda, apakah 10 algoritma teratas untuk pembelajaran mendalam? Berikut adalah algoritma teratas untuk pembelajaran mendalam pada pendapat saya Mereka semua menduduki kedudukan penting dari segi inovasi, nilai aplikasi dan pengaruh. 1. Latar belakang rangkaian saraf dalam (DNN): Rangkaian saraf dalam (DNN), juga dipanggil perceptron berbilang lapisan, adalah algoritma pembelajaran mendalam yang paling biasa Apabila ia mula-mula dicipta, ia dipersoalkan kerana kesesakan kuasa pengkomputeran tahun, kuasa pengkomputeran, Kejayaan datang dengan letupan data. DNN ialah model rangkaian saraf yang mengandungi berbilang lapisan tersembunyi. Dalam model ini, setiap lapisan menghantar input ke lapisan seterusnya dan

1. Pengenalan Pengambilan semula vektor telah menjadi komponen teras sistem carian dan pengesyoran moden. Ia membolehkan pemadanan pertanyaan dan pengesyoran yang cekap dengan menukar objek kompleks (seperti teks, imej atau bunyi) kepada vektor berangka dan melakukan carian persamaan dalam ruang berbilang dimensi. Daripada asas kepada amalan, semak semula sejarah pembangunan vektor retrieval_elasticsearch Elasticsearch Sebagai enjin carian sumber terbuka yang popular, pembangunan Elasticsearch dalam pengambilan vektor sentiasa menarik perhatian ramai. Artikel ini akan menyemak sejarah pembangunan pengambilan vektor Elasticsearch, memfokuskan pada ciri dan kemajuan setiap peringkat. Mengambil sejarah sebagai panduan, adalah mudah untuk semua orang mewujudkan rangkaian penuh pengambilan vektor Elasticsearch.

Rangkaian Neural Konvolusi (CNN) dan Transformer ialah dua model pembelajaran mendalam berbeza yang telah menunjukkan prestasi cemerlang pada tugasan yang berbeza. CNN digunakan terutamanya untuk tugas penglihatan komputer seperti klasifikasi imej, pengesanan sasaran dan pembahagian imej. Ia mengekstrak ciri tempatan pada imej melalui operasi lilitan, dan melakukan pengurangan dimensi ciri dan invarian ruang melalui operasi pengumpulan. Sebaliknya, Transformer digunakan terutamanya untuk tugas pemprosesan bahasa semula jadi (NLP) seperti terjemahan mesin, klasifikasi teks dan pengecaman pertuturan. Ia menggunakan mekanisme perhatian kendiri untuk memodelkan kebergantungan dalam jujukan, mengelakkan pengiraan berjujukan dalam rangkaian saraf berulang tradisional. Walaupun kedua-dua model ini digunakan untuk tugasan yang berbeza, ia mempunyai persamaan dalam pemodelan jujukan, jadi
