Jadual Kandungan
Apakah itu Altair?
Pengalaman pertama dengan Altair
Rumah pembangunan bahagian belakang Tutorial Python Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !

Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !

Apr 12, 2023 am 11:28 AM
python kod Modul visualisasi

Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !

Apakah itu Altair?

Altair dipanggil perpustakaan visualisasi statistik kerana ia boleh memahami, memahami dan menganalisis data secara menyeluruh melalui klasifikasi dan pengagregatan, transformasi data, interaksi data, komposit grafik, dll., dan proses pemasangannya juga sangat mudah , laksanakannya terus melalui arahan pip, seperti berikut:

pip install altair
pip install vega_datasets
pip install altair_viewer
Salin selepas log masuk

Jika anda menggunakan pengurus pakej conda untuk memasang modul Altair, kodnya adalah seperti berikut:

conda install -c conda-forge altair vega_datasets
Salin selepas log masuk

Pengalaman pertama dengan Altair

Mari cuba lukis histogram Mula-mula, buat set data DataFrame Kodnya adalah seperti berikut:

df = pd.DataFrame({"brand":["iPhone","Xiaomi","HuaWei","Vivo"],
"profit(B)":[200,55,88,60]})
Salin selepas log masuk

Kemudian kod untuk melukis histogram: <. 🎜>

import altair as alt
import pandas as pd
import altair_viewer
chart = alt.Chart(df).mark_bar().encode(x="brand:N",y="profit(B):Q")
# 展示数据,调用display()方法
altair_viewer.display(chart,inline=True)
Salin selepas log masuk
output

Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !

Dari perspektif keseluruhan struktur sintaks, mula-mula gunakan alt.Chart() untuk menentukan set data yang akan digunakan dan kemudian gunakan kaedah instance mark_*() untuk melukis Gaya carta, dan akhirnya nyatakan data yang diwakili oleh Jenis pembolehubah yang terlibat dalam graf Hanya dengan cara ini graf yang dilukis boleh memberi kesan yang kita harapkan.

N mewakili pembolehubah nominal (Nominal Sebagai contoh, jenama telefon bimbit adalah semua kata nama khas, manakala Q mewakili pembolehubah berangka (Kuantitatif), yang boleh dibahagikan kepada data diskret). dan data berterusan (berterusan), sebagai tambahan kepada data siri masa, singkatan ialah T dan pembolehubah ordinal (O), sebagai contoh, penarafan pedagang semasa proses membeli-belah dalam talian mempunyai 1-5 bintang.

Menyimpan carta

Untuk menyimpan carta akhir, kita boleh terus memanggil kaedah save() untuk menyimpan objek sebagai fail HTML Kodnya adalah seperti berikut:

chart.save("chart.html")
Salin selepas log masuk
Ia juga boleh disimpan sebagai fail JSON, yang sangat serupa dari sudut pandangan kod.

chart.save("chart.json")
Salin selepas log masuk
Sudah tentu kita juga boleh menyimpan fail dalam format imej, seperti yang ditunjukkan di bawah:

Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !

Operasi lanjutan Altair

Berdasarkan di atas, kami terus memperoleh dan mengembangkannya Sebagai contoh, jika kami ingin melukis carta bar mendatar dan menukar data pada paksi-X dan paksi-Y, kodnya adalah seperti berikut:

chart = alt.Chart(df).mark_bar().encode(x="profit(B):Q", y="brand:N")
chart.save("chart1.html")
Salin selepas log masuk
output

Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !

Pada masa yang sama, kami juga cuba melukis carta garis Kaedah mark_line() dipanggil dan kodnya adalah seperti berikut:

## 创建一组新的数据,以日期为行索引值
np.random.seed(29)
value = np.random.randn(365)
data = np.cumsum(value)
date = pd.date_range(start="20220101", end="20221231")
df = pd.DataFrame({"num": data}, index=date)
line_chart = alt.Chart(df.reset_index()).mark_line().encode(x="index:T", y="num:Q")
line_chart.save("chart2.html")
Salin selepas log masuk
output

Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !

Kita juga boleh melukis carta Gantt, yang biasanya digunakan dalam pengurusan projek Paksi-X menambah masa dan tarikh, manakala paksi-Y mewakili Ia adalah kemajuan projek Kodnya adalah seperti berikut:

project = [{"project": "Proj1", "start_time": "2022-01-16", "end_time": "2022-03-20"},
{"project": "Proj2", "start_time": "2022-04-12", "end_time": "2022-11-20"},
......
]
df = alt.Data(values=project)
chart = alt.Chart(df).mark_bar().encode(
 alt.X("start_time:T",
 axis=alt.Axis(format="%x",
 formatType="time",
 tickCount=3),
 scale=alt.Scale(domain=[alt.DateTime(year=2022, month=1, date=1),
 alt.DateTime(year=2022, month=12, date=1)])),
 alt.X2("end_time:T"),
 alt.Y("project:N", axis=alt.Axis(labelAlign="left",
labelFontSize=15,
labelOffset=0,
labelPadding=50)),
 color=alt.Color("project:N", legend=alt.Legend(labelFontSize=12,
symbolOpacity=0.7,
titleFontSize=15)))
chart.save("chart_gantt.html")
Salin selepas log masuk
output

Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !

Daripada gambar di atas, kita dapat melihat beberapa projek sedang diusahakan oleh pasukan Kemajuan setiap projek adalah berbeza Sudah tentu, jangka masa projek yang berbeza juga adalah sangat intuitif apabila ditunjukkan pada carta.

Seterusnya, kami melukis plot serakan, memanggil kaedah mark_circle(), kodnya adalah seperti berikut:

df = data.cars()
## 筛选出地区是“USA”也就是美国的乘用车数据
df_1 = alt.Chart(df).transform_filter(
 alt.datum.Origin == "USA"
)
df = data.cars()
df_1 = alt.Chart(df).transform_filter(
 alt.datum.Origin == "USA"
)
chart = df_1.mark_circle().encode(
 alt.X("Horsepower:Q"),
 alt.Y("Miles_per_Gallon:Q")
)
chart.save("chart_dots.html")
Salin selepas log masuk
output

Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !

Sudah tentu kita boleh mengoptimumkannya lagi untuk menjadikan carta lebih cantik dan menambah beberapa warna Kodnya adalah seperti berikut:

chart = df_1.mark_circle(color=alt.RadialGradient("radial",[alt.GradientStop("white", 0.0),
alt.GradientStop("red", 1.0)]),
 size=160).encode(
 alt.X("Horsepower:Q", scale=alt.Scale(zero=False,padding=20)),
 alt.Y("Miles_per_Gallon:Q", scale=alt.Scale(zero=False,padding=20))
)
Salin selepas log masuk
output

Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !Kami menukar saiz titik taburan Saiz mata taburan yang berbeza mewakili nilai yang berbeza.

Atas ialah kandungan terperinci Kongsi modul visualisasi Python yang popular, mudah dan cepat untuk bermula! !. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

PHP dan Python: Contoh dan perbandingan kod PHP dan Python: Contoh dan perbandingan kod Apr 15, 2025 am 12:07 AM

PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Bagaimana sokongan GPU untuk Pytorch di CentOS Bagaimana sokongan GPU untuk Pytorch di CentOS Apr 14, 2025 pm 06:48 PM

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Penjelasan terperinci mengenai Prinsip Docker Penjelasan terperinci mengenai Prinsip Docker Apr 14, 2025 pm 11:57 PM

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Python vs JavaScript: Komuniti, Perpustakaan, dan Sumber Python vs JavaScript: Komuniti, Perpustakaan, dan Sumber Apr 15, 2025 am 12:16 AM

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Keserasian Centos Miniopen Keserasian Centos Miniopen Apr 14, 2025 pm 05:45 PM

Penyimpanan Objek Minio: Penyebaran berprestasi tinggi di bawah CentOS System Minio adalah prestasi tinggi, sistem penyimpanan objek yang diedarkan yang dibangunkan berdasarkan bahasa Go, serasi dengan Amazons3. Ia menyokong pelbagai bahasa pelanggan, termasuk Java, Python, JavaScript, dan GO. Artikel ini akan memperkenalkan pemasangan dan keserasian minio pada sistem CentOS. Keserasian versi CentOS Minio telah disahkan pada pelbagai versi CentOS, termasuk tetapi tidak terhad kepada: CentOS7.9: Menyediakan panduan pemasangan lengkap yang meliputi konfigurasi kluster, penyediaan persekitaran, tetapan fail konfigurasi, pembahagian cakera, dan mini

Cara Mengendalikan Latihan Pittorch Diagihkan di Centos Cara Mengendalikan Latihan Pittorch Diagihkan di Centos Apr 14, 2025 pm 06:36 PM

Latihan yang diedarkan Pytorch pada sistem CentOS memerlukan langkah -langkah berikut: Pemasangan Pytorch: Premisnya ialah Python dan PIP dipasang dalam sistem CentOS. Bergantung pada versi CUDA anda, dapatkan arahan pemasangan yang sesuai dari laman web rasmi Pytorch. Untuk latihan CPU sahaja, anda boleh menggunakan arahan berikut: PipinstallToRchTorchVisionTorchaudio Jika anda memerlukan sokongan GPU, pastikan versi CUDA dan CUDNN yang sama dipasang dan gunakan versi pytorch yang sepadan untuk pemasangan. Konfigurasi Alam Sekitar Teragih: Latihan yang diedarkan biasanya memerlukan pelbagai mesin atau mesin berbilang mesin tunggal. Tempat

Cara Memilih Versi PyTorch di CentOS Cara Memilih Versi PyTorch di CentOS Apr 14, 2025 pm 06:51 PM

Apabila memasang pytorch pada sistem CentOS, anda perlu dengan teliti memilih versi yang sesuai dan pertimbangkan faktor utama berikut: 1. Keserasian Persekitaran Sistem: Sistem Operasi: Adalah disyorkan untuk menggunakan CentOS7 atau lebih tinggi. CUDA dan CUDNN: Versi Pytorch dan versi CUDA berkait rapat. Sebagai contoh, Pytorch1.9.0 memerlukan CUDA11.1, manakala Pytorch2.0.1 memerlukan CUDA11.3. Versi CUDNN juga mesti sepadan dengan versi CUDA. Sebelum memilih versi PyTorch, pastikan anda mengesahkan bahawa versi CUDA dan CUDNN yang serasi telah dipasang. Versi Python: Cawangan Rasmi Pytorch

Cara Memasang Nginx di CentOs Cara Memasang Nginx di CentOs Apr 14, 2025 pm 08:06 PM

CentOS Memasang Nginx memerlukan mengikuti langkah-langkah berikut: memasang kebergantungan seperti alat pembangunan, pcre-devel, dan openssl-devel. Muat turun Pakej Kod Sumber Nginx, unzip dan menyusun dan memasangnya, dan tentukan laluan pemasangan sebagai/usr/local/nginx. Buat pengguna Nginx dan kumpulan pengguna dan tetapkan kebenaran. Ubah suai fail konfigurasi nginx.conf, dan konfigurasikan port pendengaran dan nama domain/alamat IP. Mulakan perkhidmatan Nginx. Kesalahan biasa perlu diberi perhatian, seperti isu ketergantungan, konflik pelabuhan, dan kesilapan fail konfigurasi. Pengoptimuman prestasi perlu diselaraskan mengikut keadaan tertentu, seperti menghidupkan cache dan menyesuaikan bilangan proses pekerja.

See all articles