Jadual Kandungan
Hari ini, MLOps menyediakan rangka kerja yang agak berkuasa untuk mengendalikan kecerdasan buatan, kata Zuccarelli, kini seorang saintis data inovatif di CVS Health, yang menyebut projek sebelumnya yang dia usahakan untuk mencipta sistem yang boleh Aplikasi untuk meramalkan hasil buruk , seperti kemasukan semula atau perkembangan penyakit.
Subramanian IDC berkata saiz pasaran MLOps dijangka meningkat daripada $185 juta pada 2020 kepada kira-kira. $700 juta pada 2025. USD, tetapi mungkin juga pasaran ini dinilai rendah dengan ketara kerana produk MLOps sering digabungkan dengan platform yang lebih besar. Beliau berkata saiz sebenar pasaran MLOps boleh melebihi $2 bilion menjelang 2025.
Amaresh Tripathy, ketua analisis global di Genpact, berkata bahawa melaksanakan MLOps juga memerlukan perubahan budaya sebagai pasukan AI perusahaan.
Rumah Peranti teknologi AI Untuk mempercepatkan pembangunan AI, bagaimanakah syarikat boleh menggunakan MLOps untuk meningkatkan kecekapan pengeluaran?

Untuk mempercepatkan pembangunan AI, bagaimanakah syarikat boleh menggunakan MLOps untuk meningkatkan kecekapan pengeluaran?

Apr 12, 2023 pm 12:31 PM
AI idc mlops

Untuk mempercepatkan pembangunan AI, bagaimanakah syarikat boleh menggunakan MLOps untuk meningkatkan kecekapan pengeluaran?

Apabila syarikat menggunakan kecerdasan buatan dan membina projek pembelajaran mesin buat kali pertama, mereka sering menumpukan pada teori. Jadi adakah model yang boleh memberikan hasil yang diperlukan? Jika ya, bagaimanakah kita membina dan melatih model sedemikian?

Menurut data IDC, ia mengambil masa lebih daripada 9 bulan secara purata untuk menggunakan penyelesaian kecerdasan buatan atau pembelajaran mesin. Terutamanya kerana alat yang digunakan saintis data untuk membina bukti konsep ini selalunya tidak diterjemahkan dengan baik kepada sistem pengeluaran. Penganalisis IDC Sriram Subramanian berkata: "Kami memanggil masa yang diperlukan untuk proses R&D sebagai 'kelajuan model', iaitu berapa lama masa yang diambil dari mula hingga selesai." MLOps (Operasi Pembelajaran Mesin) ialah satu set amalan terbaik, rangka kerja dan alatan yang boleh membantu perusahaan mengurus data, model, penggunaan, pemantauan dan aspek lain yang menggunakan konsep teori untuk mengesahkan sistem AI dan menjadikannya berkesan.

Subramanian selanjutnya menjelaskan, "MLOps mengurangkan kelajuan model kepada beberapa minggu—kadangkala berhari-hari, sama seperti menggunakan DevOps untuk mempercepatkan purata masa untuk membina aplikasi, itulah sebabnya anda memerlukan MLOps boleh membina." lebih banyak model, berinovasi dengan lebih pantas dan menghadapi lebih banyak senario penggunaan. "Proposisi nilai MLOps adalah jelas." Menurut IDC, 60% daripada perusahaan akan menggunakan MLOps untuk melaksanakan aliran kerja pembelajaran mesin mereka menjelang 2024. Subramanian berkata apabila mereka meninjau responden tentang cabaran penggunaan AI dan pembelajaran mesin, salah satu halangan utama ialah kekurangan MLOp, kedua selepas kos.

Dalam artikel ini, kami meneliti apa itu MLOps, cara ia berkembang dan perkara yang perlu dicapai oleh organisasi dan perlu diingati untuk memanfaatkan sepenuhnya pendekatan yang muncul untuk operasi AI ini.

Evolusi MLOps

Beberapa tahun lalu, apabila Eugenio Zuccarelli mula membina projek pembelajaran mesin, MLOps hanyalah satu set amalan terbaik. Sejak itu, Zuccarelli telah mengusahakan projek AI di beberapa syarikat, termasuk dalam perkhidmatan penjagaan kesihatan dan kewangan, dan dia telah melihat MLOps mula berkembang dari semasa ke semasa untuk memasukkan pelbagai alat dan platform.

Hari ini, MLOps menyediakan rangka kerja yang agak berkuasa untuk mengendalikan kecerdasan buatan, kata Zuccarelli, kini seorang saintis data inovatif di CVS Health, yang menyebut projek sebelumnya yang dia usahakan untuk mencipta sistem yang boleh Aplikasi untuk meramalkan hasil buruk , seperti kemasukan semula atau perkembangan penyakit.

“Kami sedang meneroka set data dan model serta berkomunikasi dengan doktor untuk mengetahui ciri-ciri model terbaik Tetapi untuk model ini benar-benar berguna, pengguna perlu benar-benar menggunakannya >Ini bermakna membina apl mudah alih yang boleh dipercayai, pantas dan stabil, dengan sistem pembelajaran mesin di bahagian belakang yang disambungkan melalui API. "Tanpa MLOps, kami tidak akan dapat memastikan ini," katanya

Pasukannya menggunakan platform H2O MLOps dan alatan lain untuk mencipta papan pemuka kesihatan untuk model itu. “Anda pasti tidak mahu perubahan besar pada model dan anda tidak mahu memperkenalkan papan pemuka Kesihatan membolehkan kami memahami jika sistem telah berubah dengan menggunakan platform MLOps. Beliau berkata: "Sangat sukar untuk menukar fail tanpa menghentikan kerja aplikasi. MLOps boleh menukar sistem semasa pengeluaran sedang berjalan dengan impak sistem yang minimum."

Beliau berkata, MLOps Apabila platform semakin matang, ia akan mempercepatkan keseluruhan proses pembangunan model, kerana syarikat tidak perlu mencipta semula rangka kerja untuk setiap projek. Keupayaan pengurusan saluran paip data juga penting untuk pelaksanaan AI.

“Jika kami mempunyai berbilang sumber data yang perlu berkomunikasi antara satu sama lain, di sinilah MLOp berperanan Anda mahu semua data yang mengalir ke dalam model pembelajaran mesin menjadi konsisten dan berkualiti tinggi ayat Seperti kata pepatah, sampah masuk, sampah keluar Jika maklumat model buruk, ramalan itu sendiri akan menjadi buruk ”

Asas MLOps: sasaran yang sentiasa berubah

Tetapi. jangan fikir begitu, hanya kerana terdapat begitu banyak platform dan alatan yang tersedia, prinsip teras MLOps diabaikan. Perusahaan yang baru mengenali MLOps harus ingat bahawa pada terasnya, MLOps adalah mengenai mewujudkan hubungan yang kukuh antara sains data dan kejuruteraan data.

Zuccarelli berkata: "Untuk memastikan kejayaan projek MLOps, anda memerlukan jurutera data dan saintis data untuk bekerja dalam pasukan yang sama

Selain itu, cegah berat sebelah, pastikan ketelusan dan menyediakan kebolehtafsiran akauntabiliti, serta alat yang diperlukan untuk menyokong platform etika, masih dalam pembangunan, "dan pastinya terdapat banyak kerja yang perlu dilakukan untuk perkara ini kerana ia adalah bidang yang sangat baharu." Jadi tanpa penyelesaian yang lengkap Dengan penyelesaian turnkey yang tersedia, syarikat mesti mempunyai pemahaman yang baik tentang cara menjadikan MLOps berkesan dalam melaksanakan semua aspek AI. Ini bermakna membina kepakaran secara meluas, kata Meagan Gentry, pengurus amalan kebangsaan untuk pasukan AI di Insight perundingan teknologi.

MLOps merangkumi keseluruhan skop daripada pengumpulan data, pengesahan dan analisis, kepada mengurus sumber mesin dan prestasi model penjejakan Terdapat banyak alat bantu yang boleh digunakan secara tempatan, dalam awan atau di bahagian tepi sumber dan sebahagiannya adalah milik.

Tetapi menguasai teknologi hanyalah satu aspek, MLOps juga menggunakan kaedah tangkas DevOps dan prinsip pembangunan berulang, kata Gentry. Selain itu, seperti mana-mana bidang berkaitan tangkas, komunikasi adalah penting.

“Komunikasi dalam setiap peranan adalah sangat penting, komunikasi antara saintis data dan jurutera data, komunikasi dengan DevOps dan komunikasi dengan seluruh pasukan IT

Hanya Untuk syarikat baru, MLOps boleh mengelirukan. Terdapat banyak prinsip umum, berpuluh-puluh vendor yang berkaitan, dan juga banyak set alat sumber terbuka.

"Terdapat pelbagai jenis perangkap di sana sini," kata Helen Ristov, pengurus kanan seni bina perusahaan di Capgemini Americas. "Kebanyakan daripada mereka masih dalam pembangunan, dan belum ada set garis panduan rasmi lagi. Seperti DevOps, ini masih merupakan teknologi baru muncul, dan garis panduan serta dasar berkaitan akan mengambil sedikit masa untuk dilancarkan."

Ristov Adalah disyorkan bahawa perusahaan harus memulakan perjalanan MLOps mereka dengan platform data. "Mungkin mereka mempunyai set data, tetapi mereka berada di tempat yang berbeza dan tidak ada persekitaran yang bersatu padu," katanya. . Kaedah memperkenalkan data daripada sumber data yang berbeza, dan aplikasi yang berbeza mempunyai situasi yang berbeza. Contohnya, tasik data sesuai untuk perniagaan yang melakukan analisis dalam jumlah besar pada storan frekuensi tinggi dan kos rendah. Platform MLOps selalunya mempunyai alat untuk membina dan mengurus saluran paip data dan menjejak versi data latihan yang berbeza, tetapi ini bukan pendekatan yang sesuai untuk semua. Kemudian terdapat aspek lain seperti penciptaan model, kawalan versi, pengelogan, set ciri mengukur, mengurus model itu sendiri dan banyak lagi.

"Terdapat banyak pengekodan yang terlibat," kata Ristov Membina platform MLOps boleh mengambil masa berbulan-bulan dan vendor platform mempunyai banyak kerja yang perlu dilakukan apabila ia melibatkan penyepaduan.

“Terdapat banyak ruang untuk pembangunan dalam arah yang berbeza ini, banyak alatan masih dalam pembangunan, ekosistemnya sangat besar, dan orang ramai hanya memilih dan memilih apa yang mereka perlukan masih dalam tahap '. remaja' dan kebanyakan perusahaan Organisasi masih mencari konfigurasi yang paling ideal ”

Lanskap pasaran untuk MLOps

Subramanian IDC berkata saiz pasaran MLOps dijangka meningkat daripada $185 juta pada 2020 kepada kira-kira. $700 juta pada 2025. USD, tetapi mungkin juga pasaran ini dinilai rendah dengan ketara kerana produk MLOps sering digabungkan dengan platform yang lebih besar. Beliau berkata saiz sebenar pasaran MLOps boleh melebihi $2 bilion menjelang 2025.

Subramanian berkata bahawa vendor MLOps cenderung dibahagikan kepada tiga kategori utama yang pertama ialah penyedia awan yang besar, seperti AWS, Azure dan Google Cloud menyediakan fungsi MLOps sebagai perkhidmatan kepada pelanggan.

Kategori kedua ialah pengeluar platform pembelajaran mesin, seperti DataRobot, Dataiku, Iguazio, dsb.

“Kategori ketiga ialah apa yang kami gunakan untuk memanggil vendor pengurusan data, seperti Cloudera, SAS, DataBricks, dsb. Kelebihan mereka terletak pada keupayaan pengurusan data dan operasi data, dan kemudian dilanjutkan kepada keupayaan pembelajaran mesin, dan akhirnya kepada Keupayaan MLOps "

Subramanian berkata bahawa ketiga-tiga kawasan ini menunjukkan pertumbuhan yang pesat, dan perkara yang akan menonjolkan vendor MLOps ialah sama ada mereka boleh menyokong kedua-dua persekitaran tempatan dan model penggunaan awan, dan sama ada mereka boleh melaksanakan yang dipercayai. , Kecerdasan buatan yang bertanggungjawab, sama ada ia plug-and-play dan sama ada ia mudah dikembangkan, ini adalah aspek yang mencerminkan perbezaannya. ”

Menurut tinjauan IDC baru-baru ini, kekurangan pelbagai kaedah untuk melaksanakan AI yang bertanggungjawab adalah salah satu daripada tiga halangan utama kepada penyebaran kecerdasan buatan dan pembelajaran mesin, terikat di tempat kedua dengan kekurangan MLOp. Disebabkan oleh Keadaan ini sebahagian besarnya disebabkan oleh fakta bahawa tiada alternatif untuk menggunakan MLOps, kata Sumit Agarwal, penganalisis penyelidikan untuk kecerdasan buatan dan pembelajaran mesin di Gartner

"Kaedah lain adalah manual, jadi ada benar-benar tiada pilihan lain telah tersedia. Jika anda ingin membuat skala, anda memerlukan automasi. Anda memerlukan kod, data dan kebolehkesanan model. "

Menurut tinjauan baru-baru ini oleh Gartner, purata masa yang diperlukan untuk model untuk beralih daripada bukti konsep kepada pengeluaran telah dipendekkan daripada 9 bulan kepada 7.3 bulan. "Tetapi 7.3 bulan masih lama, dan perusahaan Terdapat banyak peluang untuk organisasi memanfaatkan MLOps. ”

Perubahan budaya korporat yang dibawa oleh MLOps

Amaresh Tripathy, ketua analisis global di Genpact, berkata bahawa melaksanakan MLOps juga memerlukan perubahan budaya sebagai pasukan AI perusahaan.

"Seorang saintis data sering kelihatan sebagai saintis gila yang cuba mencari jarum dalam timbunan jerami. Tetapi pada hakikatnya saintis data adalah penemu dan peneroka, bukan kilang yang menghasilkan widget. "Perusahaan sering memandang rendah usaha yang perlu mereka lakukan.

"Orang ramai boleh lebih memahami kejuruteraan dan mempunyai keperluan sedemikian dan sedemikian untuk pengalaman pengguna, tetapi atas sebab tertentu, orang ramai mempunyai keperluan yang sama sekali berbeza untuk model penggunaan. Seseorang akan menganggap bahawa semua saintis data yang mahir dalam menguji persekitaran secara semula jadi akan menggunakan model ini, atau boleh menghantar beberapa kakitangan IT untuk menggunakan mereka, yang salah. Orang ramai tidak faham apa yang mereka perlukan. ”

Banyak syarikat tidak mengetahui tentang kesan ke atas yang mungkin ada pada MLOps pada aspek lain syarikat, yang sering membawa kepada perubahan besar dalam syarikat.

“Anda boleh meletakkan MLOp di pusat panggilan dan purata masa tindak balas sebenarnya akan meningkat kerana perkara mudah diserahkan kepada mesin dan AI untuk mengendalikan, manakala perkara yang diserahkan kepada manusia sebenarnya mengambil masa yang lebih lama, kerana perkara ini cenderung lebih kompleks. Jadi anda perlu memikirkan semula apakah pekerjaan ini, jenis orang yang anda perlukan, dan jenis kemahiran yang perlu dimiliki oleh orang ini "

Tripathy berkata hari ini, sebuah syarikat. Kurang daripada 5% daripadanya. keputusan dalam organisasi didorong oleh algoritma, tetapi ini berubah dengan cepat. "Kami meramalkan bahawa dalam tempoh lima tahun akan datang, 20% hingga 25% daripada keputusan akan didorong oleh algoritma, dan setiap statistik yang kami lihat menunjukkan bahawa kami berada pada titik perubahan dalam pengembangan pesat kecerdasan buatan." > Beliau percaya bahawa MLOps adalah bahagian yang kritikal. Tanpa MLOps, anda tidak boleh menggunakan AI secara konsisten. MLOps ialah pemangkin untuk skala perusahaan AI.

Atas ialah kandungan terperinci Untuk mempercepatkan pembangunan AI, bagaimanakah syarikat boleh menggunakan MLOps untuk meningkatkan kecekapan pengeluaran?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Jun 28, 2024 am 03:51 AM

Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Jun 10, 2024 am 11:08 AM

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Jun 07, 2024 am 10:06 AM

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Jun 11, 2024 pm 03:57 PM

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Meletakkan pasaran seperti AI, GlobalFoundries memperoleh teknologi gallium nitrida Tagore Technology dan pasukan berkaitan Meletakkan pasaran seperti AI, GlobalFoundries memperoleh teknologi gallium nitrida Tagore Technology dan pasukan berkaitan Jul 15, 2024 pm 12:21 PM

Menurut berita dari laman web ini pada 5 Julai, GlobalFoundries mengeluarkan kenyataan akhbar pada 1 Julai tahun ini, mengumumkan pemerolehan teknologi power gallium nitride (GaN) Tagore Technology dan portfolio harta intelek, dengan harapan dapat mengembangkan bahagian pasarannya dalam kereta dan Internet of Things dan kawasan aplikasi pusat data kecerdasan buatan untuk meneroka kecekapan yang lebih tinggi dan prestasi yang lebih baik. Memandangkan teknologi seperti AI generatif terus berkembang dalam dunia digital, galium nitrida (GaN) telah menjadi penyelesaian utama untuk pengurusan kuasa yang mampan dan cekap, terutamanya dalam pusat data. Laman web ini memetik pengumuman rasmi bahawa semasa pengambilalihan ini, pasukan kejuruteraan Tagore Technology akan menyertai GLOBALFOUNDRIES untuk membangunkan lagi teknologi gallium nitride. G

See all articles