


Dengan penggunaan tenaga yang rendah dan penggunaan masa yang rendah, pasukan Akademi Sains & Universiti Hong Kong China menggunakan kaedah baharu untuk melaksanakan pembelajaran berbilang tugas untuk pengiraan takungan dalaman dalam penderia boleh pakai.
Pembelajaran pelbagai tugas dalam sensor bukan sahaja kelebihan utama penglihatan biologi, tetapi juga matlamat utama kecerdasan buatan. Walau bagaimanapun, cip penglihatan silikon tradisional mempunyai overhed masa dan tenaga yang besar. Selain itu, melatih model pembelajaran mendalam tradisional tidak boleh berskala atau berpatutan pada peranti edge.
Di sini, pasukan penyelidik dari Akademi Sains China dan Universiti Hong Kong mencadangkan reka bentuk bersama algoritma bahan untuk mensimulasikan paradigma pembelajaran retina manusia dengan overhed rendah. Berdasarkan semikonduktor p-NDI berbentuk berus botol dengan pemisahan pengujaan yang cekap dan sifat pengangkutan cas melalui ruang, sistem pengkomputeran takungan sensor dinamik berasaskan transistor boleh pakai dibangunkan yang mempamerkan kebolehpisahan yang sangat baik pada sifat tugas yang berbeza, memori pengecilan dan ciri keadaan gema.
Digabungkan dengan "fungsi bacaan" pada diod organik memristif, RC boleh mengecam huruf dan nombor tulisan tangan, dan mengelaskan pelbagai pakaian, dengan ketepatan 98.04%, 88.18% dan 91.76% (lebih tinggi daripada semua semikonduktor organik yang dilaporkan).
Selain imej 2D, dinamik spatiotemporal RC secara semula jadi mengekstrak ciri video berasaskan acara untuk mengklasifikasikan 3 jenis gerak isyarat dengan ketepatan 98.62%. Di samping itu, kos pengiraan jauh lebih rendah daripada rangkaian neural buatan tradisional. Kerja ini menyediakan reka bentuk bersama bahan-algoritma yang menjanjikan untuk sistem neuromorfik fotonik yang berpatutan dan cekap.
Penyelidikan ini bertajuk "Pengkomputeran takungan dalam sensor boleh pakai menggunakan polimer optoelektronik dengan ciri pengangkutan cas melalui ruang untuk pembelajaran pelbagai tugas" dan akan diterbitkan pada 2023 Diterbitkan dalam "Nature Communications" pada 28 Januari 2019.
Retina manusia bukan sahaja deria, tetapi juga memproses isyarat cahaya secara serentak dengan mengumpul isyarat dinamik yang kaya, dengan itu mempercepatkan pembelajaran berkaitan tugasan dalam korteks visual hiliran. Sinergi retina dan korteks visual mendasari keupayaan otak untuk mempelajari pelbagai tugas secara cekap, padat dan pantas serta merupakan matlamat asas kecerdasan am buatan (AGI).
Sebaliknya, cip penglihatan silikon tradisional dengan unit penderiaan, pemprosesan dan penyimpanan yang dipisahkan secara fizikal memerlukan masa dan overhed yang ketara disebabkan oleh pemindahan data yang besar dan kerap antara unit ini serta penukaran analog-ke-digital berjujukan, adalah had asas pada potensi kecekapan tenaga. Keadaan ini diburukkan lagi dengan kelembapan dalam Undang-undang Moore. Tambahan pula, pembelajaran dalam model pembelajaran mendalam tradisional, seperti rangkaian saraf berulang untuk isyarat temporal, menggunakan latihan yang membosankan pada tugas yang sangat khusus (cth., keturunan kecerunan melalui perambatan balik melalui masa, BPTT), yang sukar dalam akses bateri dan faktor bentuk tidak boleh berskala mahupun mampu milik pada peranti edge dengan faktor bentuk terhad.
Usaha besar telah dibuat untuk mensimulasikan retina manusia dan paradigma pembelajaran mampu milik. Dari segi bahan, semikonduktor dua dimensi fotoresponsif tak organik, seperti MoS2 dengan kecacatan dan tapak kekotoran, SnS dengan keadaan kecacatan dua jenis berkaitan dengan Sn dan S, Pengoksidaan berlapis- kecacatan berkaitan fosforus hitam, titik kuantum perovskit yang mempamerkan kesan kawalan cahaya yang kuat, h-BN/WSe yang boleh menangkap dan melepaskan elektron2 bidaan heterostruktur dan prestasi yang mengubah keadaan MoOx ialah bahan yang paling banyak digunakan untuk retina tiruan. Selain itu, semikonduktor organik yang sememangnya biokompatibel, boleh pakai dan berskala, seperti PDVT-10, PDPP4T yang didop klorofil, dan pentacene/sutera dan dwilapisan CD, meniru rakan biologi dengan cara yang lebih setia.
Dari segi algoritma, pengkomputeran takungan (RC) secara tak linear menayangkan isyarat temporal ke dalam ruang ciri dengan mengumpul memori pudar sistem dinamik tetap dan dianggap sebagai penyelesaian Learn yang menjanjikan. Memandangkan pembelajaran RC terhad kepada lapisan bacaan memori jangka panjang, kos latihan dikurangkan dengan ketara berbanding model pembelajaran mendalam tradisional. Walau bagaimanapun, ia masih belum mencipta algoritma bahan berpasangan untuk menggabungkan retina tiruan yang cekap dan pembelajaran kelebihan berasaskan RC yang mampu dimiliki untuk melepaskan potensi multi-tugas penglihatan neuromorfik biomimetik.
Ilustrasi: Perbandingan tindak balas arus foto semikonduktor konvensional dan p-NDI, dan sistem RC dalam penderia Prinsip reka bentuk semikonduktor terperinci. (Sumber: kertas)
Di sini, penyelidik dari Akademi Sains China dan Universiti Hong Kong mencadangkan reka bentuk bersama algoritma bahan bagi polimer semikonduktor responsif foto (p-NDI) dengan pemisahan pengujaan yang cekap dan sifat pengangkutan cas ruang penuh. , untuk membina RC dalam-sensor untuk klasifikasi corak berbilang tugas. Peranti neuromorfik yang fleksibel adalah berdasarkan transistor tiga terminal dengan saluran semikonduktor p-NDI. Disebabkan oleh tingkah laku tindak balas foto yang sangat baik dan ingatan pudar tak linear, peranti ini dapat mengesan, mengingati dan mempraproses input optik in situ secara serentak (iaitu, peningkatan kontras dan pengurangan hingar).
Ilustrasi: Prestasi pengelasan berbilang tugas. (Sumber: kertas)
Tambahan pula, sinergi antara dinamik penceraian/penggabungan semula cas, kesan photogating dan sifat pengangkutan cas melalui ruang dalam polimer Ini membolehkan dinamik berasaskan transistor Sistem RC untuk mempamerkan kebolehpisahan yang sangat baik, memori pengecilan dan ciri keadaan gema pada tugas yang berbeza. Retina berasaskan RC ini dipasangkan dengan "fungsi bacaan" yang dilaksanakan pada diod gel ion organik memristif.
Fungsi kolaboratif prapemprosesan isyarat dan RC dinamik yang disediakan oleh semua bahan optoelektronik organik mencapai ketepatan 98.04% dalam mengenal pasti huruf dan nombor tulisan tangan dan mengelaskan pelbagai pakaian, masing-masing , 88.18% dan 91.76%, yang bermaksud pembelajaran pelbagai tugas gaya dan saiz pakaian. Ketepatan keseluruhan sistem ialah 88.00%, bukan sahaja mengenal pasti pakaian dengan betul, tetapi juga mengenal pasti saiz pakaian dengan betul. Walaupun imej 2D, dinamik spatiotemporal RC telah digunakan untuk mengklasifikasikan video berasaskan peristiwa melambai tangan kiri, melambai tangan kanan dan gerak isyarat bertepuk tangan dengan ketepatan 98.62%.
Ilustrasi: Pengelasan video berasaskan acara menggunakan set data DVSGesture128. (Sumber: kertas)
Walau bagaimanapun, RC berasaskan transistor p-NDI ini tidak mengandungi elektrolit cecair yang digunakan secara meluas dalam transistor elektrokimia organik sinaptik, dengan itu meningkatkan kebolehpercayaan Skala dan kebolehkendalian. Kerja ini menyediakan strategi reka bentuk bersama bahan-algoritma yang menjanjikan untuk sistem neuromorfik fotonik yang boleh dipakai, berpatutan dan cekap dengan keupayaan pembelajaran berbilang tugas.
Pautan kertas: https://www.nature.com/articles/s41467-023-36205-9
Atas ialah kandungan terperinci Dengan penggunaan tenaga yang rendah dan penggunaan masa yang rendah, pasukan Akademi Sains & Universiti Hong Kong China menggunakan kaedah baharu untuk melaksanakan pembelajaran berbilang tugas untuk pengiraan takungan dalaman dalam penderia boleh pakai.. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Apakah maksud mod Jangan Ganggu WeChat Pada masa kini, dengan populariti telefon pintar dan perkembangan pesat Internet mudah alih, platform media sosial telah menjadi bahagian yang amat diperlukan dalam kehidupan seharian orang ramai. WeChat ialah salah satu platform media sosial paling popular di China, dan hampir semua orang mempunyai akaun WeChat. Kita boleh berkomunikasi dengan rakan, keluarga dan rakan sekerja dalam masa nyata melalui WeChat, berkongsi detik dalam hidup kita dan memahami situasi semasa satu sama lain. Namun begitu, dalam era ini, sudah pasti kita juga berdepan dengan masalah sarat maklumat dan kebocoran privasi terutamanya bagi mereka yang perlu fokus atau

Ditulis di atas & pemahaman peribadi penulis: Pada masa ini, dalam keseluruhan sistem pemanduan autonomi, modul persepsi memainkan peranan penting Hanya selepas kenderaan pemanduan autonomi yang memandu di jalan raya memperoleh keputusan persepsi yang tepat melalui modul persepsi boleh Peraturan hiliran dan. modul kawalan dalam sistem pemanduan autonomi membuat pertimbangan dan keputusan tingkah laku yang tepat pada masanya dan betul. Pada masa ini, kereta dengan fungsi pemanduan autonomi biasanya dilengkapi dengan pelbagai penderia maklumat data termasuk penderia kamera pandangan sekeliling, penderia lidar dan penderia radar gelombang milimeter untuk mengumpul maklumat dalam modaliti yang berbeza untuk mencapai tugas persepsi yang tepat. Algoritma persepsi BEV berdasarkan penglihatan tulen digemari oleh industri kerana kos perkakasannya yang rendah dan penggunaan mudah, dan hasil keluarannya boleh digunakan dengan mudah untuk pelbagai tugas hiliran.

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lapisan bawah fungsi C++ sort menggunakan isihan gabungan, kerumitannya ialah O(nlogn), dan menyediakan pilihan algoritma pengisihan yang berbeza, termasuk isihan pantas, isihan timbunan dan isihan stabil.

Malah menjawab panggilan dalam mod Jangan Ganggu boleh menjadi pengalaman yang sangat menjengkelkan. Seperti namanya, mod Jangan Ganggu mematikan semua pemberitahuan panggilan masuk dan makluman daripada e-mel, mesej, dsb. Anda boleh mengikuti set penyelesaian ini untuk membetulkannya. Betulkan 1 – Dayakan Mod Fokus Dayakan mod fokus pada telefon anda. Langkah 1 – Leret ke bawah dari atas untuk mengakses Pusat Kawalan. Langkah 2 – Seterusnya, dayakan “Mod Fokus” pada telefon anda. Mod Fokus mendayakan mod Jangan Ganggu pada telefon anda. Ia tidak akan menyebabkan sebarang makluman panggilan masuk muncul pada telefon anda. Betulkan 2 – Tukar Tetapan Mod Fokus Jika terdapat beberapa isu dalam tetapan mod fokus, anda harus membetulkannya. Langkah 1 – Buka tetingkap tetapan iPhone anda. Langkah 2 – Seterusnya, hidupkan tetapan mod Fokus

Konvergensi kecerdasan buatan (AI) dan penguatkuasaan undang-undang membuka kemungkinan baharu untuk pencegahan dan pengesanan jenayah. Keupayaan ramalan kecerdasan buatan digunakan secara meluas dalam sistem seperti CrimeGPT (Teknologi Ramalan Jenayah) untuk meramal aktiviti jenayah. Artikel ini meneroka potensi kecerdasan buatan dalam ramalan jenayah, aplikasi semasanya, cabaran yang dihadapinya dan kemungkinan implikasi etika teknologi tersebut. Kecerdasan Buatan dan Ramalan Jenayah: Asas CrimeGPT menggunakan algoritma pembelajaran mesin untuk menganalisis set data yang besar, mengenal pasti corak yang boleh meramalkan di mana dan bila jenayah mungkin berlaku. Set data ini termasuk statistik jenayah sejarah, maklumat demografi, penunjuk ekonomi, corak cuaca dan banyak lagi. Dengan mengenal pasti trend yang mungkin terlepas oleh penganalisis manusia, kecerdasan buatan boleh memperkasakan agensi penguatkuasaan undang-undang

01Garis prospek Pada masa ini, sukar untuk mencapai keseimbangan yang sesuai antara kecekapan pengesanan dan hasil pengesanan. Kami telah membangunkan algoritma YOLOv5 yang dipertingkatkan untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi, menggunakan piramid ciri berbilang lapisan, strategi kepala pengesanan berbilang dan modul perhatian hibrid untuk meningkatkan kesan rangkaian pengesanan sasaran dalam imej penderiaan jauh optik. Menurut set data SIMD, peta algoritma baharu adalah 2.2% lebih baik daripada YOLOv5 dan 8.48% lebih baik daripada YOLOX, mencapai keseimbangan yang lebih baik antara hasil pengesanan dan kelajuan. 02 Latar Belakang & Motivasi Dengan perkembangan pesat teknologi penderiaan jauh, imej penderiaan jauh optik resolusi tinggi telah digunakan untuk menggambarkan banyak objek di permukaan bumi, termasuk pesawat, kereta, bangunan, dll. Pengesanan objek dalam tafsiran imej penderiaan jauh

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58
