


Bagaimanakah kecerdasan buatan akan membentuk semula masa depan pembuatan?
Menurut laporan tinjauan terbaru yang dikeluarkan oleh organisasi penyelidikan, nilai yang akan dibawa oleh kecerdasan buatan kepada industri pembuatan akan mencecah AS$2.3 bilion menjelang 2022, dan dijangka mencecah AS$16.7 bilion menjelang 2027. Daripada automasi dan analitik ramalan, kepada pemprosesan bahasa semula jadi (NLP) dan penglihatan komputer, hasil penggunaan sebarang bentuk kecerdasan buatan boleh dilihat dalam kejayaan dan kejayaan pengguna awal seperti IBM, Intel, General Electric, Siemens dan lain-lain. Perniagaan berkembang.
Artikel ini akan melihat beberapa cara syarikat pembuatan boleh mendapat manfaat daripada melaksanakan kecerdasan buatan ke dalam proses mereka. Selain itu, pelbagai aplikasi kecerdasan buatan akan dikongsi yang akan membantu perniagaan menjimatkan kos dan menambah baik proses, tanpa mengira butiran produk.
Mengapa menggunakan kecerdasan buatan dalam pembuatan?
Pakar industri menegaskan bahawa memanfaatkan kemajuan dalam robotik, percetakan 3D dan kecerdasan buatan boleh meningkatkan kecekapan, Mengurangkan kos dan meningkatkan keselamatan adalah kritikal. Faedah kecerdasan buatan kepada pembuatan adalah dua kali ganda. Di satu pihak, orang ramai melihat pertumbuhan dan skalabiliti yang tidak pernah berlaku sebelum ini yang ditawarkannya kepada perniagaan, dan sebaliknya, kesan positif terhadap pekerja serta produktiviti serta kepuasan mereka.
(1) Ramalan Permintaan Ramalan
Ramalan tahap inventori dan permintaan sentiasa menjadi cabaran. Walaupun kaedah tradisional seperti helaian dan kebarangkalian Excel berdasarkan permintaan dan jualan tahun lepas mungkin berkesan sebelum ini, kecerdasan buatan kini membantu mencapai tahap ketepatan baharu. Menggunakan sejumlah besar data sejarah, arah aliran dan peristiwa semasa serta memanfaatkan alatan kecerdasan buatan dan model pembelajaran mesin yang betul untuk meramalkan keperluan perniagaan, tahap ketepatan tertinggi boleh dijamin. Ini termasuk setiap bahagian rantaian bekalan. Contohnya, produk mana yang paling cepat dijual pada masa tertentu dalam setahun; seberapa cepat syarikat kehabisan produk tertentu apabila permintaan turun naik, dan sebagainya. Oleh itu, mengumpul data sejarah dan memperkayakannya dengan data masa nyata boleh memberikan gambaran yang tepat tentang prospek permintaan. Ia juga meningkatkan jualan dan giliran inventori sambil mengurangkan kos dan lebihan pengeluaran.
(2) Kurangkan pelepasan karbon
Menurut Forum Ekonomi Dunia, satu perlima daripada pelepasan karbon global datang daripada pembuatan. Ini termasuk sisa, pengeluaran berlebihan dan, sudah tentu, pelepasan karbon daripada bahan api fosil. Oleh itu, menggunakan teknologi untuk meminimumkan kesan negatif pengeluaran terhadap alam sekitar merupakan isu yang harus ditangani oleh syarikat seawal mungkin. Setelah menerima pakai teknologi digital, langkah seterusnya bagi kebanyakan syarikat pembuatan ialah menjadikan data yang mereka kumpulkan lebih telus. Ini bukan sahaja akan menjadi penanda aras untuk usaha penyahkarbonan, ia juga akan memenangi kepercayaan pelanggan. Menggunakan teknologi kecerdasan buatan untuk memantau pelepasan sepanjang proses pengeluaran, pengangkutan, peralatan, dll., jejak karbon sebenar boleh difahami. Hasilnya, perniagaan boleh mengoptimumkan kecekapan mereka, meramalkan pelepasan dan merancang untuk keperluan dan peraturan masa depan.
(3) Dayakan pengoptimuman proses
Kepintaran buatan boleh membantu perusahaan mengubah dan mengoptimumkan proses dalaman dan luaran dengan memaksimumkan produktiviti dan keuntungan. Perubahan kepada aliran kerja boleh memberi kesan kepada kos, kualiti pengeluaran, penghantaran dan setiap aspek proses pengeluaran. Salah satu penambahbaikan terbesar dalam kitaran hayat produk ialah automasi. Beberapa faedah yang ditawarkannya termasuk mengurangkan kos dan masa untuk memasarkan dengan mengautomasikan tugas yang kompleks atau berulang, menghapuskan risiko yang terdedah kepada kesilapan manusia, membolehkan lebih banyak barisan pengeluaran berskala, meningkatkan produktiviti dan meminimumkan penggunaan tenaga.
(4) Meningkatkan kepuasan pekerja
Memperkenalkan kecerdasan buatan ke dalam proses pembuatan mempunyai impak yang sama penting dan bernilai terhadap kepuasan pekerja dan kesihatan mental. Menurut satu kajian, kecerdasan buatan meningkatkan kesihatan mental, terutamanya dalam kalangan pekerja berkemahiran rendah sebanyak 2.342 mata, dan sebanyak 2.070 mata dalam kalangan pekerja yang lahir sebelum 1980-an. Mencapai angka ini tidak menghairankan apabila anda mempertimbangkan kesan kecerdasan buatan bukan sahaja pada aspek perniagaan pembuatan tetapi juga pada pekerja korporat. Ia berkurangan dari semasa ke semasa, membantu dalam mempelajari kemahiran dan teknik baharu sambil mengurangkan masa yang diperlukan untuk menaiki kapal dan secara amnya menambah baik persekitaran kerja. Selain itu, menggunakan kecerdasan buatan boleh meningkatkan produktiviti pekerja dengan mengautomasikan tugasan berulang seperti kemasukan data dan mencipta helaian Excel. Dengan cara ini, pekerja mempunyai lebih banyak masa untuk memberi tumpuan kepada aspek lain yang lebih penting dalam kerja mereka.
Aplikasi Kepintaran Buatan dalam Pembuatan
(1) Jaminan Kualiti Lanjutan dan Pemeriksaan Visual
Jaminan kualiti selalunya difikirkan semula, yang mengakibatkan kos tambahan yang tidak dirancang , kelewatan dalam masa ke pasaran, ketidakpuasan hati pelanggan, dan kehilangan reputasi syarikat. Untuk menghapuskan risiko ini, Accedia mencipta penyelesaian untuk salah seorang pelanggannya dalam industri pembuatan untuk membantu pekerja, jurutera dan pelanggan mereka meramalkan kegagalan masa depan dalam pengeluaran galas. Projek ini memanfaatkan pembelajaran mesin dan model penglihatan komputer untuk mengenal pasti dan mengklasifikasikan kerosakan pada imej galas gagal yang dimuat naik. Pengedaran awan yang teguh membolehkan faedah analitik ramalan merebak ke seluruh kilang pelanggan di seluruh dunia dan mengesan ralat pengeluaran sebelum galas mencapai pelanggan akhir. Ia juga membolehkan analisis punca yang tepat dan pengoptimuman pengeluaran. Laporan McKinsey & Company mendakwa bahawa AI boleh meningkatkan pengesanan kecacatan sebanyak 90% berbanding dengan pemeriksaan manual.
(2) Aplikasi Robot
Menurut kajian terbaru, kira-kira 90% daripada semua robot yang digunakan hari ini boleh didapati di kemudahan pembuatan. Apabila orang bercakap tentang robotik dalam pembuatan, orang biasanya memikirkan perkakasan. Walau bagaimanapun, robotik bergantung pada perkakasan seperti pada perisian. Menggunakan kecerdasan buatan termaju dan model pembelajaran mesin, robot boleh melaksanakan tugas di loji pengeluaran lebih cepat daripada manusia sambil menghapuskan risiko ralat. Semua robot pakar dalam tugas tertentu dan bebas sepenuhnya daripada pengawasan manusia. Ini bermakna walaupun robot bertanggungjawab untuk pemasangan, pengendalian bahan, kimpalan, pengedaran atau pengendalian bahan, pekerja boleh memberi tumpuan kepada tugas yang lebih maju dan kritikal perniagaan.
Penggunaan robot di tingkat pembuatan berkemungkinan menarik jualan yang lebih besar dan pelaburan yang lebih tinggi, dan akan meningkatkan kualiti dan kebolehulangan. Ia akan meningkatkan fleksibiliti dan kelajuan ke pasaran. Mengautomasikan proses pembuatan dan tugas penyumberan luar kepada robot akan membolehkan belanjawan gaji diperuntukkan untuk melatih semula bakat dan menyokong pertumbuhan perniagaan.
(3) Isu analisis
Melalui teknologi kecerdasan buatan, terutamanya pemprosesan bahasa semula jadi (NLP), kaedah yang paling biasa untuk menerbitkan laporan ialah chatbots. Natural Language Processing (NLP) ialah teknologi yang agak baharu yang memahami bahasa manusia yang tidak berstruktur dan menukarkannya kepada data berstruktur yang kemudiannya boleh dianalisis. Menggunakan chatbots, pekerja pembuatan mempunyai akses sedia kepada maklumat masa nyata yang tepat tentang tahap pengeluaran yang berbeza, bahagian mesin dan keadaannya, yang amat penting, terutamanya dalam situasi sensitif masa. Pemprosesan bahasa semula jadi (NLP) dan kes penggunaan chatbot lain boleh termasuk automasi sokongan pelanggan, pemberitahuan penghantaran atau kemas kini, pertanyaan tingkat pengurusan, inventori dan semakan pembekal. Kecerdasan buatan akan memberikan faedah tambahan seperti akses cepat dan mudah kepada pangkalan data dan pengetahuan, kecekapan dan operasi yang lebih baik, dan pengalaman interaktif yang inovatif untuk pengguna akhir.
(4) Memperkukuh keselamatan rangkaian
Satu lagi kes penggunaan penting kecerdasan buatan dalam pembuatan ialah keselamatan rangkaian industri. Ini boleh termasuk pelanggaran IoT, jangkitan rantaian bekalan, pancingan data, kecurian harta intelek dan juga perisian tebusan, yang boleh mengakibatkan kehilangan sejumlah besar wang dan data berharga. Malangnya, sebagai industri yang menguntungkan, pembuatan adalah sasaran yang jelas untuk penggodam. Akibatnya, lebih daripada 40% syarikat pembuatan mengalami serangan siber pada tahun 2020 sahaja.
Mengguna pakai garis panduan keselamatan yang disyorkan dan rangka kerja keselamatan siber adalah satu kemestian untuk semua orang. Walau bagaimanapun, ini kadangkala tidak mencukupi untuk menangani ancaman dan meminimumkan risiko. Akibatnya, bergantung pada strategi keselamatan siber dipacu AI menjadi kebiasaan baharu. Ia membenarkan pengesanan tingkah laku peninjauan dalaman yang berniat jahat, serangan arahan dan kawalan (termasuk penggunaan alat capaian jauh luaran), serangan brute force SMB, imbasan akaun dan banyak lagi. Kecerdasan buatan boleh mengesan semua ancaman dan serangan ini dalam masa nyata dan mengambil tindakan pembetulan dengan lebih cepat, lebih berkesan dan lebih tepat. Ia juga boleh mengumpul data pada semua trafik rangkaian, menganalisis log dan peristiwa serta meramalkan ancaman.
Perkembangan masa depan kecerdasan buatan dalam pembuatan
Menurut laporan tinjauan terbaru oleh Deloitte:
- Dianggarkan industri pembuatan menjana kira-kira 1812PB data setiap tahun, jauh melebihi industri runcit, kewangan, komunikasi dan lain-lain.
- 93% syarikat pembuatan percaya bahawa kecerdasan buatan akan memacu pertumbuhan dan inovasi merentas sektor perniagaan.
- 83% daripada syarikat yang ditinjau percaya bahawa kecerdasan buatan mempunyai atau akan memberi kesan positif ke atas keuntungan mereka.
Ketika persaingan dalam pasaran global menjadi semakin sengit, semakin banyak sektor pembuatan telah menyertai permainan kecerdasan buatan - makanan, farmaseutikal, bahan kimia, kereta, elektronik, dll. Walau bagaimanapun, peningkatan pelaksanaan timbunan teknologi AI bukan tanpa cabaran. Halangan nombor satu yang dihadapi syarikat dalam menyelidik kecerdasan buatan adalah keperluan untuk bakat mahir dan kekurangan kepercayaan terhadap sumber dalaman. Oleh itu, seperti yang ditunjukkan oleh pengguna awal kepada kami, cara terbaik untuk menyelesaikan tugas yang menakutkan ini ialah dengan menyumber luarnya kepada pasukan AI yang berdedikasi.
Kesimpulan
Kini anda boleh melihat pelbagai aplikasi kecerdasan buatan dalam pembuatan dan faedahnya dalam meramalkan keperluan penyelenggaraan, mengoptimumkan proses pembuatan, mengurus rantaian bekalan, meningkatkan skala atau kawalan kualiti . Pengurangan kos adalah sukar sehingga parameter seperti jualan dan kualiti ditingkatkan, maka susunan teknologi AI dan rakan kongsi perisian yang betul boleh mewujudkannya.
Atas ialah kandungan terperinci Bagaimanakah kecerdasan buatan akan membentuk semula masa depan pembuatan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Menurut berita dari laman web ini pada 5 Julai, GlobalFoundries mengeluarkan kenyataan akhbar pada 1 Julai tahun ini, mengumumkan pemerolehan teknologi power gallium nitride (GaN) Tagore Technology dan portfolio harta intelek, dengan harapan dapat mengembangkan bahagian pasarannya dalam kereta dan Internet of Things dan kawasan aplikasi pusat data kecerdasan buatan untuk meneroka kecekapan yang lebih tinggi dan prestasi yang lebih baik. Memandangkan teknologi seperti AI generatif terus berkembang dalam dunia digital, galium nitrida (GaN) telah menjadi penyelesaian utama untuk pengurusan kuasa yang mampan dan cekap, terutamanya dalam pusat data. Laman web ini memetik pengumuman rasmi bahawa semasa pengambilalihan ini, pasukan kejuruteraan Tagore Technology akan menyertai GLOBALFOUNDRIES untuk membangunkan lagi teknologi gallium nitride. G
