Rumah Peranti teknologi AI Selepas kemunculan besar model besar, sains komputer akhirnya menjadi 'sains semula jadi'

Selepas kemunculan besar model besar, sains komputer akhirnya menjadi 'sains semula jadi'

Apr 12, 2023 pm 05:22 PM
komputer AI sains semula jadi

Selepas kemunculan besar model besar, sains komputer akhirnya menjadi 'sains semula jadi'

​Kecerdasan buatan (AI) semasa berada dalam era yang indah, dan pengetahuan tersirat yang menakjubkan sering muncul (Polanyi’s Revenge and the new romance and tacitness of artificial intelligence) Pengetahuan, https:/ /bit.ly/3qYrAOY), tetapi sudah pasti komputer tidak akan dapat menyelesaikan tugas ini untuk masa yang lama pada masa hadapan. Penyelidikan menarik yang muncul baru-baru ini adalah mengenai sistem pembelajaran berskala besar berdasarkan seni bina Transformer, berdasarkan korpora multi-modal berskala rangkaian besar dan berbilion parameter untuk latihan. Contoh biasa ialah model bahasa besar, GPT3 dan PALM yang bertindak balas kepada gesaan teks sewenang-wenangnya, model bahasa/imej DALL-E dan Imagen yang menukar teks kepada imej (malah model dengan tingkah laku umum seperti GATO).

Kemunculan model pembelajaran berskala besar secara asasnya telah mengubah sifat penyelidikan kecerdasan buatan. Apabila penyelidik baru-baru ini menggunakan DALL-E, mereka percaya bahawa ia seolah-olah telah membangunkan bahasa uniknya sendiri Jika manusia dapat menguasainya, mereka mungkin dapat berinteraksi dengan DALL-E dengan lebih baik. Sesetengah penyelidik juga mendapati bahawa prestasi GPT3 mengenai masalah penaakulan boleh dipertingkatkan dengan menambahkan mantera ajaib tertentu (seperti "Mari kita fikir langkah demi langkah") dalam gesaan. Kini model pembelajaran besar seperti GPT3 dan DALL-E adalah seperti "spesies asing" dan kita perlu cuba menyahkod tingkah laku mereka.

Ini sememangnya titik perubahan yang pelik untuk kecerdasan buatan. Sejak kemunculannya, kecerdasan buatan telah menjadi "tanah tiada manusia" antara kejuruteraan (sistem dengan fungsi tertentu) dan sains (menemui undang-undang fenomena alam). Bahagian saintifik AI berpunca daripada dakwaan asalnya, iaitu cerapan tentang sifat kecerdasan manusia, manakala bahagian kejuruteraan berpunca daripada fokus pada keupayaan pintar (membolehkan komputer mempamerkan tingkah laku pintar) dan bukannya cerapan tentang kecerdasan manusia.

Situasi semasa berubah dengan pantas, terutamanya kerana kecerdasan buatan telah menjadi sinonim dengan model pembelajaran berskala besar. Status quo semasa ialah tiada siapa yang tahu apa-apa tentang cara model terlatih mempunyai fungsi tertentu, atau fungsi lain yang mungkin mereka miliki (seperti kebolehan PALM untuk "menjelaskan jenaka"). Malah pencipta mereka sering tidak tahu apa yang boleh dilakukan oleh sistem ini. Meneroka sistem ini untuk memahami skop "berfungsi" mereka telah menjadi trend terkini dalam penyelidikan kecerdasan buatan.

Adalah semakin jelas bahawa beberapa bahagian kecerdasan buatan tersasar dari akar kejuruteraan mereka. Hari ini sukar untuk memikirkan sistem pembelajaran yang besar sebagai reka bentuk kejuruteraan dengan matlamat khusus dalam pengertian tradisional. Lagipun, seseorang tidak boleh mengatakan bahawa anak-anaknya "direka." Bidang kejuruteraan biasanya tidak meraikan sifat baharu sistem yang tidak dijangka yang direka bentuknya (sama seperti jurutera awam tidak meraikan dengan teruja apabila jambatan yang mereka reka untuk menahan taufan Kategori 5 didapati bergoyang).

Terdapat bukti yang semakin meningkat bahawa kajian sistem besar yang terlatih (tetapi tidak direka) ini ditakdirkan untuk menjadi sains semula jadi: memerhati kefungsian sistem; menjalankan analisis kualitatif amalan terbaik;

Memandangkan fakta bahawa penampilan sedang dikaji dan bukannya apa yang ada di dalam, ini adalah serupa dengan matlamat bercita-cita tinggi untuk "memikirkannya" tanpa bukti sebenar dalam biologi. Pembelajaran mesin ialah usaha penyelidikan yang lebih memfokuskan kepada sebab sistem melakukan apa yang dilakukannya (anggap seperti melakukan kajian "MRI" tentang sistem pembelajaran yang besar) dan bukannya membuktikan bahawa sistem itu direka bentuk untuk berbuat demikian. Pengetahuan yang diperoleh daripada kajian ini boleh meningkatkan keupayaan untuk memperhalusi sistem (sama seperti dalam bidang perubatan). Sudah tentu kajian tetapan permukaan membolehkan campur tangan yang lebih disasarkan daripada tetapan dalaman.

Kecerdasan buatan menjadi sains semula jadi dan juga akan memberi kesan kepada keseluruhan sains komputer, memandangkan kecerdasan buatan akan memberi impak yang besar kepada hampir semua bidang pengkomputeran. Perkataan "sains" dalam sains komputer juga telah dipersoalkan dan dipersendakan. Tetapi itu telah berubah sekarang, kerana kecerdasan buatan telah menjadi sains semula jadi yang mengkaji sistem pembelajaran buatan berskala besar. Sudah tentu, mungkin terdapat banyak tentangan dan pendapat terhadap peralihan ini, kerana sains komputer telah lama menjadi cawan suci "betul dengan pembinaan". Ia adalah betul seperti anjing yang terlatih, sama seperti manusia.

Kembali pada tahun 2003, pemenang Anugerah Turing Leslie Lamport membunyikan penggera tentang kemungkinan bahawa masa depan pengkomputeran adalah biologi dan bukannya logik, mengatakan sains komputer akan membolehkan kita hidup dalam dunia homeopati dan penyembuhan iman. Pada masa itu, kebimbangannya terutamanya mengenai sistem perisian kompleks yang diprogramkan oleh manusia, dan bukannya model pembelajaran berskala besar yang lebih misteri hari ini.

Apabila beralih daripada bidang yang terutama berkaitan dengan reka bentuk yang disengajakan dan "ketepatan dengan pembinaan" kepada cuba meneroka atau memahami artifak sedia ada (tidak direka bentuk), anjakan metodologi yang akan dibawanya patut difikirkan. Tidak seperti kajian biologi tentang makhluk liar, kecerdasan buatan mengkaji artifak buatan manusia yang tidak mempunyai "rasa reka bentuk." Isu etika pasti akan timbul apabila ia datang untuk mencipta dan menggunakan artifak buatan yang tidak difahami. Model pembelajaran yang besar tidak mungkin dijamin untuk menyokong keupayaan yang boleh dibuktikan, sama ada berkaitan dengan ketepatan, ketelusan atau keadilan, namun ini adalah isu kritikal dalam menggunakan dan mempraktikkan sistem ini. Walaupun manusia juga tidak dapat memberikan bukti tentang ketepatan keputusan dan tindakan mereka sendiri, terdapat sistem undang-undang yang membolehkan manusia mematuhi hukuman seperti denda, kecaman, dan juga penjara. Untuk sistem pembelajaran berskala besar, apakah sistem yang setara?

Estetika penyelidikan pengiraan juga akan berubah. Penyelidik semasa boleh menilai kertas mengikut perkadaran mereka yang mengandungi teorem dan definisi. Tetapi apabila matlamat sains komputer menjadi lebih dan lebih seperti matlamat sains semula jadi seperti biologi, terdapat keperluan untuk membangunkan metodologi estetik pengiraan baharu (kerana teorem sifar dan nisbah takrifan sifar tidak akan sangat berbeza). Terdapat tanda-tanda bahawa analisis kerumitan pengiraan telah mengambil tempat belakang dalam penyelidikan AI.

Atas ialah kandungan terperinci Selepas kemunculan besar model besar, sains komputer akhirnya menjadi 'sains semula jadi'. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Arahan sembang dan cara menggunakannya
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Jun 28, 2024 am 03:51 AM

Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Jun 10, 2024 am 11:08 AM

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Jun 11, 2024 pm 03:57 PM

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Jun 07, 2024 am 10:06 AM

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. Aug 01, 2024 pm 09:40 PM

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas

See all articles