Lima soalan biasa untuk pemula dalam pembelajaran mesin
Mengendalikan Nilai Yang Hilang
Dalam prapemprosesan data, langkah penting ialah mengendalikan data yang hilang kerana model pembelajaran mesin tidak akan menerima nilai NaN sebagai inputnya. Terdapat banyak cara untuk mengisi nilai NaN ini, tetapi pertama sekali kita perlu memahami kepentingan nilai yang hilang.
Cara yang sangat mudah ialah mengalih keluar semua nilai yang hilang daripada set data pembelajaran mesin, tetapi sebelum melakukan itu, semak peratusan keseluruhan nilai NaN yang terdapat dalam set data pembelajaran mesin. Jika kurang daripada 1%, kami boleh mengalih keluar semua nilai yang hilang, jika tidak, kami perlu mengaitkan data dengan memilih kaedah lain seperti ukuran kecenderungan pusat, KNN Imputer, dsb.
Apabila kami menggunakan nombor dalam ciri, kami menggunakan min atau median. Min ialah nilai purata yang boleh kita kira dengan menjumlahkan semua nilai berturut-turut dan kemudian membahagikan dengan jumlahnya. Median juga mewakili purata Median menyusun data mengikut saiz untuk membentuk urutan, iaitu data di tengah-tengah jujukan. Apabila data individu dalam satu set data sangat berbeza, median sering digunakan untuk menggambarkan kecenderungan pusat set data.
Jika terdapat pengedaran yang serong dalam set data pembelajaran mesin, selalunya lebih baik menggunakan median daripada min.
Outlier/Outlier
Outlier ialah titik data yang berbeza secara ketara daripada pemerhatian lain. Kadangkala, outlier ini juga boleh menjadi sensitif. Sebelum berurusan dengan outlier, adalah disyorkan untuk memeriksa set data pembelajaran mesin.
Contohnya:
- Outlier adalah signifikan dalam ramalan nilai kedalaman berdasarkan hujan yang diperhatikan.
- Ramalan harga luar dalam rumah tidak bermakna.
Kebocoran data
Apakah masalah kebocoran data dalam model pembelajaran mesin?
Kebocoran data berlaku apabila data yang kami gunakan untuk melatih model pembelajaran mesin mengandungi maklumat yang model pembelajaran mesin cuba ramalkan. Ini menghasilkan keputusan ramalan yang tidak boleh dipercayai selepas model digunakan.
Masalah ini mungkin disebabkan oleh kaedah penyeragaman atau penormalan data. Kerana kebanyakan kita terus menggunakan kaedah ini sebelum membahagikan data kepada set latihan dan ujian.
Memilih model pembelajaran mesin yang betul
Dalam masa nyata, saya rasa beralih kepada beberapa model yang rumit tanpa perlu boleh menimbulkan beberapa isu kebolehtafsiran untuk orang yang berorientasikan perniagaan. Sebagai contoh, regresi linear akan lebih mudah untuk ditafsirkan daripada algoritma rangkaian saraf.
Pilih model pembelajaran mesin yang sepadan terutamanya berdasarkan saiz dan kerumitan set data Jika kita menangani masalah yang rumit, kita boleh menggunakan beberapa model pembelajaran mesin yang cekap, seperti SVN, KNN, hutan rawak, dll. .
Kebanyakan masa, fasa penerokaan data akan membantu kami memilih model pembelajaran mesin yang sepadan. Jika data boleh dipisahkan secara linear dalam visualisasi, maka kita boleh menggunakan regresi linear. Sokongan mesin vektor dan KNN akan berguna jika kita tidak tahu apa-apa tentang data.
Terdapat juga masalah kebolehtafsiran model Contohnya, regresi linear lebih mudah dijelaskan daripada algoritma rangkaian saraf.
Metrik Pengesahan
Metrik ialah ukuran kuantitatif peramal model dan data sebenar. Jika soalan adalah dalam regresi, metrik utama ialah ketepatan (skor R2), MAE (min ralat mutlak) dan RMSE (root min ralat kuasa dua). Jika ia adalah masalah klasifikasi, penunjuk utama ialah ketepatan, ingat semula, skor F1 dan matriks kekeliruan.
Atas ialah kandungan terperinci Lima soalan biasa untuk pemula dalam pembelajaran mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Potensi aplikasi bahasa Go dalam bidang pembelajaran mesin adalah besar Kelebihannya ialah: Concurrency: Ia menyokong pengaturcaraan selari dan sesuai untuk operasi intensif pengiraan dalam tugas pembelajaran mesin. Kecekapan: Pengumpul sampah dan ciri bahasa memastikan kod itu cekap, walaupun semasa memproses set data yang besar. Kemudahan penggunaan: Sintaksnya ringkas, menjadikannya mudah untuk belajar dan menulis aplikasi pembelajaran mesin.
