Rumah > Peranti teknologi > AI > Analitis AI berbilang bahasa adalah kunci untuk membuka potensi pengalaman pelanggan untuk memacu pertumbuhan perniagaan

Analitis AI berbilang bahasa adalah kunci untuk membuka potensi pengalaman pelanggan untuk memacu pertumbuhan perniagaan

WBOY
Lepaskan: 2023-04-13 10:49:06
ke hadapan
880 orang telah melayarinya

Analitis AI berbilang bahasa adalah kunci untuk membuka potensi pengalaman pelanggan untuk memacu pertumbuhan perniagaan

Analisis teks ialah disiplin yang berkuasa yang mampu menemui dan menganotasi setiap contoh pendapat pelanggan, tanpa mengira bahasa yang dituturkan oleh pelanggan.

Bagi eksekutif perniagaan yang menyedari sejumlah besar data tidak berstruktur yang mengelilingi perniagaan mereka, kemungkinan bahasa agnostik AI untuk analisis teks adalah masalah kritikal (tetapi mudah diabaikan).

Lagipun, data tidak berstruktur (UD) bukanlah data berstruktur dalam format seperti hamparan, tetapi biasanya sejumlah besar data dalam pelbagai media sosial, blog, ulasan tapak web, panggilan pusat panggilan, sembang peribadi, dsb. – dan data ini mewakili sumber yang luas dengan nilai yang lebih besar untuk perniagaan yang berminat untuk meningkatkan pengalaman pelanggan (CX).

Kebanyakan data tidak berstruktur. Menurut anggaran dari MIT, 80% hingga 90% data hari ini adalah data tidak berstruktur, dan ia berkembang pesat. Dan fakta ini bermakna bahawa semua pendapat pelanggan boleh dikumpulkan dan dianalisis oleh perniagaan yang telah melabur dalam teknologi dan kepakaran.

Di sinilah analisis teks kecerdasan buatan dimainkan. Ini menyebabkan setiap pelanggan yang mengulas tentang jenama perniagaan di mana-mana platform mempunyai akses yang tidak pernah berlaku sebelum ini kepada pemikiran, pendapat dan idea mereka. Ia membolehkan syarikat mengenal pasti masalah kesakitan pelanggan dengan tepat dan cepat yang perlu ditangani terlebih dahulu, sekali gus mengurangkan pergolakan pelanggan.

Memandangkan keluasan ini, adalah amat penting untuk mengenali nilai agnostik bahasa. Mengehadkan analisis dan anotasi kepada perspektif bahasa Inggeris sahaja (apabila perspektif lain wujud) menjejaskan skala data tidak berstruktur dan kebolehgeneralisasian analisis teks ini.

Oleh itu, adalah perlu untuk memahami cara analisis AI berbilang bahasa berfungsi dan potensinya untuk mengumpulkan gambaran keseluruhan yang menyeluruh tentang pendapat pelanggan.

Kuasa pemprosesan bahasa semula jadi

Asas analisis teks dipacu AI ialah gabungan pembelajaran mesin (ML) dan pemprosesan bahasa semula jadi (NLP).

Pembelajaran mesin ialah kaedah kecerdasan buatan yang direka untuk meniru pembelajaran manusia. Walaupun pengaturcaraan tradisional memerlukan pelaksanaan peraturan yang dicipta oleh manusia, pembelajaran mesin menggunakan analisis data untuk mempelajari corak yang sangat kompleks yang boleh digunakan untuk inferens, menjadikan pembelajaran mesin sangat baik dalam menyelesaikan masalah dan melaksanakan tugas yang kompleks.

Pada masa yang sama, pemprosesan bahasa semula jadi (NLP) tergolong dalam bahasa pemprosesan. Malah, ia boleh difahami sebagai salah satu tugas kompleks yang disokong oleh pembelajaran mesin.

Dalam konteks ini, penggunaan pemprosesan bahasa semula jadi (NLP) adalah pelbagai. Ia boleh digunakan untuk matlamat yang lebih mudah, seperti mengira kekerapan istilah atau perkataan tertentu muncul dalam teks. Atau seseorang boleh mengambil cabaran yang lebih sukar untuk menentukan mood atau emosi teks yang diberikan.

Jelas sekali, kedua-duanya sangat berguna kepada perniagaan yang ingin memahami secara terperinci pendapat semua pelanggan yang ada.

Penggunaan pemprosesan bahasa semula jadi (NLP) ini membolehkan perniagaan menilai sejumlah besar data untuk mengetahui kekerapan jenama mereka diperkatakan dalam talian atau luar talian, serta memahami sama ada ulasan adalah positif atau negatif, atau sama ada mereka berkaitan dengan siri ini adalah tentang emosi yang lebih bernuansa.

Pendekatan berbilang bahasa

Yang penting, faedah pendekatan ini ialah keupayaannya untuk memasukkan semua pendapat pelanggan – analisis teks digunakan untuk setiap pendapat dan bukannya sampel atau pilihan .

Walau bagaimanapun, untuk mencapai matlamat ini, bahasa yang digunakan untuk menyatakan pendapat tidak boleh dihadkan, tetapi AI perlu sepenuhnya bahasa-agnostik, terutamanya jika perniagaan ialah organisasi multinasional.

Ini boleh dicapai melalui penggunaan pembelajaran mesin tanpa pengawasan dan penyeliaan. Pembelajaran mesin yang diselia bermakna algoritma yang terlibat "dilatih" oleh manusia yang menganotasi data latihan, dan AI boleh melakukan lebih baik daripada manusia dalam tugas yang melibatkan sejumlah besar data (juga dikenali sebagai data besar).

Untuk memastikan semua keperluan bahasa dipenuhi, para penyelidik memanfaatkan pasukan yang terdiri daripada kira-kira 300 penutur asli pelbagai bahasa yang membaca, memahami dan memberi anotasi data tidak berstruktur secara manual. Contohnya, tentukan sama ada tweet itu positif atau negatif, sama ada terdapat sindiran dalam subjeknya, atau pun perjalanan pelanggan yang dicadangkan oleh kandungan e-mel atau mesej sembang.

Setelah AI ​​dilatih dalam bahasa ibundanya (tanpa memerlukan terjemahan ke dalam bahasa Inggeris dan model pembelajaran mesin menggunakan bahasa Inggeris) untuk mencapai matlamatnya (sama ada mewujudkan emosi atau mengenal pasti topik) dengan ketepatan yang tinggi, hasilnya boleh digunakan Visualisasi dalam bahasa Inggeris dengan mudah untuk membuka kunci semua pendapat pelanggan dalam bahasa yang mereka boleh fahami untuk profesional pengalaman pelanggan (CX), pengurus pengekalan pelanggan dan banyak lagi.

Perkara yang paling penting ialah ketepatan kecerdasan buatan boleh terus bertambah baik. Sebagai contoh, apabila seseorang menganotasi subset kecil tweet dengan emosi tertentu, ketepatannya boleh diukur. Anda boleh melihat bahawa 80% hingga 90% atau lebih kandungan sepadan dengan algoritma, tidak kira dalam bahasa apa tweet itu ditulis.

Memandangkan subjektiviti mengekspresikan emosi, ini menunjukkan betapa hebatnya teknologi AI ini.

Mencari jarum dalam timbunan jerami data tidak berstruktur

Data tidak berstruktur (UD) ada di mana-mana dan ia mewakili peluang untuk memahami pendapat semua pelanggan, bukannya, mengikut definisi, seperti tinjauan pendapat Sahaja pendapat pelanggan berasaskan sampel boleh diberikan.

Walau bagaimanapun, untuk benar-benar merealisasikan keupayaan ini untuk mendapatkan akses tanpa batasan kepada pendapat pengguna, syarikat multinasional bukan sahaja perlu mengupah pakar dan juruteknik AI, tetapi juga memastikan sistem AI mereka boleh memperoleh data dalam semua bahasa yang berkaitan latihan berketepatan tinggi seperti dalam bahasa Inggeris.

Dengan cara ini, analisis teks bukan sahaja bebas sumber tetapi juga bebas bahasa. Benarkan pemimpin perniagaan dengan yakin menegaskan bahawa pemahaman mereka tentang perspektif pelanggan, titik kesakitan dan mata perolehan adalah terperinci, tepat dan komprehensif.

Atas ialah kandungan terperinci Analitis AI berbilang bahasa adalah kunci untuk membuka potensi pengalaman pelanggan untuk memacu pertumbuhan perniagaan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:51cto.com
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan