Kecerdasan buatan berasaskan peraturan vs pembelajaran mesin
Sistem pembelajaran mesin belajar daripada data lepas dan menyesuaikan diri dengan situasi baharu secara autonomi, manakala sistem berasaskan peraturan bergantung pada campur tangan manusia untuk sebarang pengubahsuaian.
Apakah kecerdasan buatan berasaskan peraturan?
Kecerdasan buatan berasaskan peraturan ialah sistem AI berdasarkan set peraturan yang telah ditetapkan. Peraturan ini dicipta oleh manusia dan menentukan tindakan yang akan diambil oleh sistem dalam situasi yang berbeza.
Contohnya, jika X berlaku, Y harus dilaksanakan. AI berasaskan peraturan bersifat deterministik, bermakna ia memerlukan pendekatan sebab dan akibat.
Model AI berasaskan peraturan memerlukan data dan maklumat asas untuk berjalan dengan jayanya, dan ia terhad kepada melaksanakan tugas dan fungsi yang diprogramkan untuk dilakukan. Ia adalah bentuk automasi proses robotik yang lebih maju dan boleh digunakan untuk tugas seperti kemasukan data, klasifikasi dokumen dan pengesanan penipuan.
Apakah pembelajaran mesin?
Sumber: AnalyticsVidhya
Pembelajaran mesin ialah kecerdasan buatan Satu cabang sains yang memberi tumpuan kepada penggunaan data dan algoritma untuk meniru cara manusia belajar. Algoritma pembelajaran mesin dilatih untuk membuat ramalan dan klasifikasi berdasarkan data lepas, meningkatkan ketepatan secara beransur-ansur dari semasa ke semasa.
Model pembelajaran mesin dibahagikan kepada tiga kategori utama: pembelajaran diselia, pembelajaran tanpa penyeliaan dan pembelajaran separa penyeliaan. Pembelajaran diselia melibatkan latihan model menggunakan data berlabel untuk membuat ramalan. Pembelajaran tanpa seliaan melibatkan pencarian corak dalam data tidak berlabel, dan pembelajaran separuh seliaan adalah gabungan kedua-duanya.
Algoritma pembelajaran mesin selalunya dibuat menggunakan rangka kerja yang mempercepatkan pembangunan penyelesaian, seperti TensorFlow dan PyTorch. Pembelajaran mesin mempunyai pelbagai kes penggunaan, termasuk pemprosesan bahasa semula jadi, pengecaman imej dan pengesanan penipuan.
Apakah perbezaan utama antara kecerdasan buatan berasaskan peraturan dan pembelajaran mesin?
Perbezaan utama antara AI berasaskan peraturan dan pembelajaran mesin ialah sistem berasaskan peraturan bergantung pada peraturan yang dikodkan oleh manusia untuk membuat keputusan, manakala sistem pembelajaran mesin belajar daripada data lepas Belajar dan menyesuaikan diri kepada situasi baharu sendiri. Model AI berasaskan peraturan adalah deterministik dan terhad kepada melaksanakan tugas yang diprogramkan, manakala model pembelajaran mesin boleh digunakan untuk pelbagai tugas dan fungsi.
Bila hendak menggunakan model berasaskan peraturan?
Model berasaskan peraturan paling sesuai apabila masalah ditakrifkan dengan baik, data input berstruktur dan peraturannya jelas dan mudah difahami. Ia sangat berkesan untuk masalah yang boleh dipecahkan kepada satu siri langkah logik di mana hasilnya boleh diramalkan berdasarkan satu set peraturan jika-maka. Contoh sistem berasaskan peraturan termasuk sistem pakar dalam bidang perubatan dan undang-undang, sistem pengesanan penipuan dalam bidang kewangan dan chatbot dalam perkhidmatan pelanggan.
Dalam kes ini, peraturan biasanya ditetapkan dan tidak kerap berubah, dan data yang dikendalikan oleh sistem adalah agak mudah dan berstruktur. Walau bagaimanapun, model berasaskan peraturan mungkin tidak sesuai untuk masalah yang lebih kompleks di mana data tidak berstruktur atau peraturan sentiasa berubah, kerana mereka mungkin tidak dapat mengendalikan fleksibiliti dan kebolehsuaian yang diperlukan.
Bila hendak menggunakan pembelajaran mesin?
Pembelajaran mesin sangat sesuai untuk situasi yang masalahnya rumit dan data input tidak berstruktur, bising atau berubah-ubah. Ia juga sesuai untuk situasi di mana peraturan atau corak yang mengawal data tidak diketahui, tetapi boleh ditemui melalui analisis. Model pembelajaran mesin boleh memproses sejumlah besar data dan mengenal pasti corak dan perhubungan yang kompleks yang mungkin tidak dapat dilihat dengan serta-merta kepada penganalisis manusia.
Ia boleh digunakan dalam pelbagai aplikasi, termasuk pengecaman imej dan pertuturan, pemprosesan bahasa semula jadi, sistem pengesyoran dan analitik ramalan. Model pembelajaran mesin amat berguna apabila masalah adalah dinamik dan peraturan atau corak berubah mengikut masa. Walau bagaimanapun, model pembelajaran mesin memerlukan sejumlah besar data latihan berkualiti tinggi dan mungkin memerlukan sumber pengkomputeran yang signifikan untuk latihan dan inferens, yang mungkin bertindak sebagai penghalang kepada penerimaan dalam beberapa kes.
Kesimpulan
Sumber: Megaputer
Walaupun kedua-dua AI berasaskan peraturan dan pembelajaran mesin mempunyai kebaikan dan keburukan, pilihan antara keduanya bergantung pada kes penggunaan tertentu. AI berasaskan peraturan paling sesuai untuk tugasan yang bersifat deterministik dan tidak memerlukan penyesuaian kepada situasi baharu, manakala pembelajaran mesin paling sesuai untuk tugasan yang memerlukan penyesuaian dan pembelajaran daripada data lepas. Memandangkan kecerdasan buatan terus berkembang, kedua-dua sistem berasaskan peraturan dan pembelajaran mesin akan memainkan peranan penting dalam membentuk masa depannya.
Atas ialah kandungan terperinci Kecerdasan buatan berasaskan peraturan vs pembelajaran mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Menurut berita dari laman web ini pada 5 Julai, GlobalFoundries mengeluarkan kenyataan akhbar pada 1 Julai tahun ini, mengumumkan pemerolehan teknologi power gallium nitride (GaN) Tagore Technology dan portfolio harta intelek, dengan harapan dapat mengembangkan bahagian pasarannya dalam kereta dan Internet of Things dan kawasan aplikasi pusat data kecerdasan buatan untuk meneroka kecekapan yang lebih tinggi dan prestasi yang lebih baik. Memandangkan teknologi seperti AI generatif terus berkembang dalam dunia digital, galium nitrida (GaN) telah menjadi penyelesaian utama untuk pengurusan kuasa yang mampan dan cekap, terutamanya dalam pusat data. Laman web ini memetik pengumuman rasmi bahawa semasa pengambilalihan ini, pasukan kejuruteraan Tagore Technology akan menyertai GLOBALFOUNDRIES untuk membangunkan lagi teknologi gallium nitride. G
