Jadual Kandungan
Latar Belakang
Cabaran
Break
Rumah Peranti teknologi AI Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Apr 13, 2023 pm 07:01 PM
Model

Baru-baru ini, kertas kerja Alibaba Cloud Machine Learning PAI "Parameter-Efficient Sparsity for Large Language Models Fine-Tuning" mengenai latihan jarang model besar telah diterima oleh IJCAI 2022, persidangan kecerdasan buatan teratas.
Kertas ini mencadangkan algoritma latihan jarang yang cekap parameter PST Dengan menganalisis indeks kepentingan pemberat, disimpulkan bahawa ia mempunyai dua ciri: peringkat rendah dan struktur. Berdasarkan kesimpulan ini, algoritma PST memperkenalkan dua set matriks kecil untuk mengira kepentingan pemberat Berbanding dengan keperluan asal untuk matriks sebesar berat untuk menyimpan dan mengemas kini indeks kepentingan, jumlah parameter yang perlu. dikemas kini untuk latihan yang jarang dikurangkan. Berbanding dengan algoritma latihan jarang yang biasa digunakan, algoritma PST boleh mencapai ketepatan model jarang yang serupa sambil mengemas kini hanya 1.5% parameter.

Latar Belakang

Dalam beberapa tahun kebelakangan ini, syarikat utama dan institusi penyelidikan telah mencadangkan pelbagai model besar, dengan parameter antara berpuluh bilion hingga puluhan ribu daripada berbilion-bilion hingga ratusan bilion, malah model super besar berpuluh-puluh trilion telah muncul. Model ini memerlukan sejumlah besar sumber perkakasan untuk dilatih dan digunakan, yang menjadikannya sukar untuk dilaksanakan. Oleh itu, bagaimana untuk mengurangkan sumber yang diperlukan untuk latihan dan penggunaan model besar telah menjadi masalah yang mendesak.
Teknologi pemampatan model secara berkesan boleh mengurangkan sumber yang diperlukan untuk penggunaan model Dengan mengalih keluar beberapa pemberat, pengiraan dalam model boleh ditukar daripada pengiraan padat kepada pengiraan jarang, dengan itu mengurangkan penggunaan memori dan mempercepatkan pengiraan. Pada masa yang sama, berbanding dengan kaedah pemampatan model lain (pemangkasan/kuantisasi berstruktur), jarang boleh mencapai kadar mampatan yang lebih tinggi sambil memastikan ketepatan model, dan lebih sesuai untuk model besar dengan sejumlah besar parameter.

Cabaran

Kaedah latihan jarang sedia ada boleh dibahagikan kepada dua kategori, satu ialah algoritma jarang tanpa data berasaskan berat; algoritma jarang. Algoritma jarang berasaskan berat ditunjukkan dalam rajah di bawah, seperti pemangkasan magnitud [1], yang menilai kepentingan berat dengan mengira norma L1 berat, dan menjana hasil jarang sepadan berdasarkan ini. Algoritma jarang berasaskan berat adalah cekap dalam pengiraan dan tidak memerlukan penyertaan data latihan, tetapi indeks kepentingan yang dikira tidak cukup tepat, sekali gus menjejaskan ketepatan model jarang akhir.

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Algoritma jarang berasaskan data ditunjukkan dalam rajah di bawah, seperti pemangkasan pergerakan[2], yang mengukur kepentingan berat dengan mengira hasil darab berat dan penunjuk seksual kecerunan yang sepadan. Kaedah jenis ini mengambil kira peranan pemberat pada set data tertentu dan oleh itu boleh menilai dengan lebih tepat kepentingan pemberat. Walau bagaimanapun, disebabkan keperluan untuk mengira dan menyimpan kepentingan setiap berat, kaedah jenis ini sering memerlukan ruang tambahan untuk menyimpan indeks kepentingan (S dalam rajah). Pada masa yang sama, berbanding dengan kaedah jarang berasaskan berat, proses pengiraan selalunya lebih kompleks. Kelemahan ini menjadi lebih jelas apabila saiz model meningkat.

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Ringkasnya, algoritma jarang sebelumnya adalah sama ada cekap tetapi tidak cukup tepat (algoritma berasaskan berat), atau tepat tetapi tidak cukup cekap (data -algoritma berasaskan). Oleh itu, kami berharap dapat mencadangkan algoritma jarang yang cekap yang boleh melaksanakan latihan jarang pada model besar dengan tepat dan cekap.

Break

Masalah dengan algoritma jarang berasaskan data ialah mereka biasanya memperkenalkan parameter tambahan yang sama saiz dengan pemberat untuk mengetahui kepentingan pemberat, yang membawa kita kepada Fikirkan tentang cara mengurangkan kepentingan memperkenalkan parameter tambahan untuk mengira berat. Pertama sekali, untuk memaksimumkan penggunaan maklumat sedia ada untuk mengira kepentingan pemberat, kami mereka bentuk indeks kepentingan pemberat sebagai formula berikut:

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Iaitu, kami menggabungkan penunjuk bebas data dan dipacu data untuk bersama-sama menentukan kepentingan berat model akhir. Adalah diketahui bahawa indeks kepentingan bebas data sebelumnya tidak memerlukan parameter tambahan untuk disimpan dan cekap dalam pengiraan, jadi apa yang perlu kita selesaikan ialah cara memampatkan parameter latihan tambahan yang diperkenalkan oleh indeks kepentingan dipacu data kemudian.

Berdasarkan algoritma jarang sebelumnya, indeks kepentingan terdorong data boleh direka bentuk sebagai

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

, jadi kami mula menganalisis lebihan penunjuk kepentingan yang dikira oleh formula ini. Pertama sekali, berdasarkan kerja sebelumnya, diketahui bahawa kedua-dua pemberat dan kecerunan yang sepadan mempunyai sifat peringkat rendah yang jelas [3, 4], jadi kita boleh menyimpulkan bahawa indeks kepentingan juga mempunyai sifat peringkat rendah, jadi kita boleh memperkenalkan dua sifat peringkat rendah Matriks kecil untuk mewakili matriks penunjuk kepentingan asal yang sama besar dengan pemberat.

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Kedua, kami menganalisis keputusan selepas jarang model dan mendapati ia mempunyai ciri-ciri struktur yang jelas. Seperti yang ditunjukkan dalam rajah di atas, sebelah kanan setiap gambar ialah hasil visualisasi berat jarang akhir, dan sebelah kiri ialah histogram yang mengira kadar sparsity yang sepadan bagi setiap baris/lajur. Dapat dilihat bahawa kebanyakan pemberat dalam 30% baris dalam gambar kiri telah dialih keluar, dan sebaliknya, kebanyakan pemberat dalam 30% lajur dalam gambar kanan telah dialih keluar. Berdasarkan fenomena ini, kami memperkenalkan dua matriks berstruktur kecil untuk menilai kepentingan setiap baris/lajur pemberat.

Berdasarkan analisis di atas, kami mendapati bahawa indeks kepentingan terdorong data mempunyai kedudukan dan struktur yang rendah, jadi kami boleh menukarnya kepada perwakilan berikut:

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

di mana A dan B mewakili kedudukan rendah, dan R dan C mewakili struktur. Melalui analisis sedemikian, matriks indeks kepentingan, yang asalnya sebesar berat, telah diuraikan kepada empat matriks kecil, sekali gus mengurangkan parameter latihan yang terlibat dalam latihan jarang. Pada masa yang sama, untuk mengurangkan lagi parameter latihan, kami menguraikan kemas kini berat kepada dua matriks kecil U dan V berdasarkan kaedah sebelumnya, jadi formula indeks kepentingan akhir menjadi bentuk berikut:

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Rajah rangka kerja algoritma yang sepadan adalah seperti berikut:

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Keputusan percubaan algoritma PST terakhir ialah seperti berikut. Kami Dibandingkan dengan pemangkasan magnitud dan pemangkasan pergerakan pada tugas NLU (BERT, RoBERTa) dan NLG (GPT-2), pada kadar sparsity 90%, PST boleh mencapai ketepatan model yang setanding dengan algoritma sebelumnya pada kebanyakan set data. , tetapi Hanya 1.5% daripada parameter latihan diperlukan.

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.

Teknologi PST telah disepadukan ke dalam perpustakaan mampatan model Alibaba Cloud Machine Learning PAI, serta model besar platform Alicemind Dalam fungsi latihan yang jarang. Ia telah membawa pecutan prestasi kepada penggunaan model besar dalam Kumpulan Alibaba Pada berpuluh bilion PLUG model besar, PST boleh memecut 2.5 kali tanpa mengurangkan ketepatan model dan mengurangkan penggunaan memori sebanyak 10 kali berbanding dengan latihan yang jarang. Pada masa ini, PAI Pembelajaran Mesin Awan Alibaba telah digunakan secara meluas dalam pelbagai industri, menyediakan perkhidmatan pembangunan AI pautan penuh, merealisasikan penyelesaian AI bebas dan boleh dikawal untuk perusahaan, dan meningkatkan kecekapan kejuruteraan pembelajaran mesin secara menyeluruh.

Nama kertas: Parameter-Efficient Sparsity untuk Model Bahasa Besar Penalaan Halus

Penulis kertas: Yuchao Li, Fuli Luo, Chuanqi Tan, Mengdi Wang , Songfang Huang , Shen Li , Junjie Bai

Pautan pdf kertas: ​https://arxiv.org/pdf/2205.11005.pdf​

Atas ialah kandungan terperinci Kaedah latihan yang jarang untuk model besar dengan ketepatan yang tinggi dan penggunaan sumber yang rendah telah dijumpai.. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Arahan sembang dan cara menggunakannya
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Model MoE sumber terbuka paling berkuasa di dunia ada di sini, dengan keupayaan bahasa Cina setanding dengan GPT-4, dan harganya hanya hampir satu peratus daripada GPT-4-Turbo Model MoE sumber terbuka paling berkuasa di dunia ada di sini, dengan keupayaan bahasa Cina setanding dengan GPT-4, dan harganya hanya hampir satu peratus daripada GPT-4-Turbo May 07, 2024 pm 04:13 PM

Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

Apr 09, 2024 am 11:52 AM

AI memang mengubah matematik. Baru-baru ini, Tao Zhexuan, yang telah mengambil perhatian terhadap isu ini, telah memajukan keluaran terbaru "Buletin Persatuan Matematik Amerika" (Buletin Persatuan Matematik Amerika). Memfokuskan pada topik "Adakah mesin akan mengubah matematik?", ramai ahli matematik menyatakan pendapat mereka Seluruh proses itu penuh dengan percikan api, tegar dan menarik. Penulis mempunyai barisan yang kuat, termasuk pemenang Fields Medal Akshay Venkatesh, ahli matematik China Zheng Lejun, saintis komputer NYU Ernest Davis dan ramai lagi sarjana terkenal dalam industri. Dunia AI telah berubah secara mendadak Anda tahu, banyak artikel ini telah dihantar setahun yang lalu.

Google gembira: prestasi JAX mengatasi Pytorch dan TensorFlow! Ia mungkin menjadi pilihan terpantas untuk latihan inferens GPU Google gembira: prestasi JAX mengatasi Pytorch dan TensorFlow! Ia mungkin menjadi pilihan terpantas untuk latihan inferens GPU Apr 01, 2024 pm 07:46 PM

Prestasi JAX, yang dipromosikan oleh Google, telah mengatasi Pytorch dan TensorFlow dalam ujian penanda aras baru-baru ini, menduduki tempat pertama dalam 7 penunjuk. Dan ujian tidak dilakukan pada TPU dengan prestasi JAX terbaik. Walaupun dalam kalangan pembangun, Pytorch masih lebih popular daripada Tensorflow. Tetapi pada masa hadapan, mungkin lebih banyak model besar akan dilatih dan dijalankan berdasarkan platform JAX. Model Baru-baru ini, pasukan Keras menanda aras tiga hujung belakang (TensorFlow, JAX, PyTorch) dengan pelaksanaan PyTorch asli dan Keras2 dengan TensorFlow. Pertama, mereka memilih satu set arus perdana

Hello, Atlas elektrik! Robot Boston Dynamics hidup semula, gerakan pelik 180 darjah menakutkan Musk Hello, Atlas elektrik! Robot Boston Dynamics hidup semula, gerakan pelik 180 darjah menakutkan Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

KAN, yang menggantikan MLP, telah diperluaskan kepada konvolusi oleh projek sumber terbuka KAN, yang menggantikan MLP, telah diperluaskan kepada konvolusi oleh projek sumber terbuka Jun 01, 2024 pm 10:03 PM

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Kerja baharu pada ramalan siri masa + model besar NLP: secara automatik menjana gesaan tersirat untuk ramalan siri masa Kerja baharu pada ramalan siri masa + model besar NLP: secara automatik menjana gesaan tersirat untuk ramalan siri masa Mar 18, 2024 am 09:20 AM

Hari ini saya ingin berkongsi kerja penyelidikan terbaru dari University of Connecticut yang mencadangkan kaedah untuk menyelaraskan data siri masa dengan model pemprosesan bahasa semula jadi (NLP) yang besar pada ruang terpendam untuk meningkatkan prestasi peramalan siri masa. Kunci kepada kaedah ini ialah menggunakan petunjuk spatial terpendam (prompt) untuk meningkatkan ketepatan ramalan siri masa. Tajuk kertas: S2IP-LLM: SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting Alamat muat turun: https://arxiv.org/pdf/2403.05798v1.pdf 1. Model latar belakang masalah besar

Robot Tesla bekerja di kilang, Musk: Tahap kebebasan tangan akan mencapai 22 tahun ini! Robot Tesla bekerja di kilang, Musk: Tahap kebebasan tangan akan mencapai 22 tahun ini! May 06, 2024 pm 04:13 PM

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

FisheyeDetNet: algoritma pengesanan sasaran pertama berdasarkan kamera fisheye FisheyeDetNet: algoritma pengesanan sasaran pertama berdasarkan kamera fisheye Apr 26, 2024 am 11:37 AM

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi

See all articles