


AI tahu apa yang anda fikirkan dan melukisnya untuk anda Kod projek telah menjadi sumber terbuka
Dalam novel fiksyen sains "The Three-Body Problem", orang Trisolaran yang cuba menduduki bumi diberi suasana yang sangat unik: berkongsi maklumat melalui gelombang otak, dengan pemikiran yang telus dan niat jahat antara satu sama lain . Bagi mereka, berfikir dan bercakap adalah perkataan yang sama. Manusia pula mengambil kesempatan daripada sifat pemikiran yang tidak jelas untuk menghasilkan "Pelan Menghadap Dinding", dan akhirnya berjaya memperdaya Trisolaran dan mencapai kemenangan berperingkat.
Maka persoalannya, adakah pemikiran manusia benar-benar legap? Dengan kemunculan beberapa cara teknikal, jawapan kepada soalan ini nampaknya tidak begitu mutlak. Ramai penyelidik cuba menyahkod misteri pemikiran manusia dan menyahkod beberapa isyarat otak ke dalam teks, imej dan maklumat lain.
Baru-baru ini, dua pasukan penyelidik telah mencapai kemajuan penting dalam arah penyahkodan imej pada masa yang sama, dan kertas berkaitan telah diterima oleh CVPR 2023 .
Pasukan pertama adalah dari Universiti Osaka yang baru-baru ini menggunakan Stable Diffusion untuk membina semula corak aktiviti otak daripada imej aktiviti otak manusia yang diperolehi oleh pengimejan resonans magnetik berfungsi (fMRI). resolusi, imej berketepatan tinggi (lihat "Resapan Stabil membaca isyarat otak anda untuk menghasilkan semula imej, dan penyelidikan telah diterima oleh CVPR").
Kebetulan pada masa yang hampir sama, pasukan China dari Universiti Nasional Singapura, Universiti China Hong Kong dan Universiti Stanford juga menghasilkan keputusan yang sama. Mereka membangunkan penyahkod visual manusia yang dipanggil "MinD-Vis", yang boleh menyahkod terus daripada data fMRI melalui pemodelan topeng terlatih dan model stimulasi visual manusia. Ia menjana imej ini yang bukan sahaja terperinci secara munasabah, tetapi juga mewakili semantik dan ciri imej dengan tepat (seperti tekstur dan bentuk). Pada masa ini, kod untuk penyelidikan ini adalah sumber terbuka.
Tajuk kertas: Seeing Beyond the Brain: Model Resapan Bersyarat dengan Pemodelan Bertopeng Jarang untuk Penyahkodan Penglihatan
- Pautan kertas: http://arxiv.org/abs/2211.06956
- Pautan kod: https://github.com/zjc062/mind-vis
- Pautan projek: https://mind-vis.github.io/
Seterusnya kami akan memperkenalkan kertas ini secara terperinci.
Gambaran Keseluruhan Penyelidikan
"Apa yang anda lihat ialah apa yang anda fikirkan."
Persepsi manusia dan pengetahuan terdahulu berkait rapat dalam otak Persepsi kita tentang dunia bukan sahaja dipengaruhi oleh rangsangan objektif, tetapi juga oleh pengalaman kita. Memahami aktiviti otak ini dan menyahkod maklumat adalah salah satu matlamat penting neurosains kognitif, di mana menyahkod maklumat visual adalah masalah yang mencabar.
Pengimejan resonans magnetik berfungsi (fMRI) ialah kaedah bukan invasif dan berkesan yang biasa digunakan untuk memulihkan maklumat visual seperti kategori imej. Tujuan MinD-Vis adalah untuk meneroka kemungkinan menggunakan model pembelajaran mendalam untuk menyahkod rangsangan visual terus daripada data fMRI.
Apabila kaedah sebelumnya menyahkod aktiviti saraf kompleks terus daripada data fMRI, terdapat kekurangan gandingan {fMRI - imej} dan panduan biologi yang berkesan, jadi imej yang dibina semula biasanya kabur dan tidak bermakna dari segi semantik . Oleh itu, adalah satu cabaran penting untuk mempelajari perwakilan fMRI secara berkesan, yang membantu mewujudkan hubungan antara aktiviti otak dan rangsangan visual.
Selain itu, kebolehubahan individu merumitkan masalah, dan kita perlu mempelajari perwakilan daripada set data yang besar dan melonggarkan kekangan penjanaan sintesis bersyarat daripada fMRI.
Oleh itu, Penulis percaya bahawa menggunakan pembelajaran penyeliaan kendiri (Pembelajaran kendiri dengan tugas pra-teks) ditambah dengan model generatif berskala besar boleh membolehkan model diperhalusi. pada set data yang agak kecil Dengan pengetahuan kontekstual dan kebolehan generatif yang menakjubkan .
Didorong oleh analisis di atas, MinD-Vis mencadangkan pemodelan isyarat topeng dan model resapan pendam dwi-syarat untuk penyahkodan visual manusia Sumbangan khusus adalah seperti berikut:
- Cadangan Pemodelan Otak Bertopeng Berkod Jarang (SC-MBM) sebagai pelajar pra-latihan yang dibimbing secara biologi untuk penyahkodan visual ciri otak yang berkesan.
- Dengan menambahkan model resapan pendam dwisyarat (DC-LDM), ketekalan penyahkodan diperkukuh di bawah semantik yang sama sambil membenarkan varians dijana.
- Menggabungkan keupayaan perwakilan SC-MBM dan keupayaan penjanaan DC-LDM, imej yang dijana oleh MinD-Vis adalah lebih munasabah sambil mengekalkan maklumat semantik.
- Diuji secara kuantitatif dan kualitatif pada berbilang set data.
Perbandingan dengan kaedah sebelumnya – Kualiti generasi
Perbandingan dengan kaedah sebelumnya – Perbandingan kuantitatif penunjuk penilaian
Pembelajaran kendiri + model generatif berskala besar
Memandangkan pengumpulan pasangan {fMRI - image} sangat mahal dan memakan masa, tugas ini sentiasa mengalami kekurangan anotasi data. Selain itu, setiap set data dan setiap data individu akan mempunyai offset domain tertentu.
Dalam tugasan ini, penyelidik bertujuan untuk mewujudkan hubungan antara aktiviti otak dan rangsangan visual, dan dengan itu menjana maklumat imej yang sepadan.
Untuk melakukan ini, mereka menggunakan pembelajaran diselia sendiri dan model generatif berskala besar. Mereka percaya pendekatan ini membolehkan model diperhalusi pada set data yang agak kecil dan memperoleh pengetahuan kontekstual dan keupayaan generatif yang menakjubkan.
Rangka Kerja MinD-Vis
Berikut akan memperkenalkan rangka kerja MinD-Vis secara terperinci dan memperkenalkan sebab serta idea untuk reka bentuk.
Data fMRI mempunyai ciri dan masalah berikut:
- fMRI menggunakan voxel 3D (voxel) untuk mengukur korelasi paras oksigen darah otak ( BOLD) perubahan untuk melihat perubahan dalam aktiviti otak. Amplitud voxel bersebelahan selalunya serupa, menunjukkan kehadiran redundansi spatial dalam data fMRI.
- Apabila mengira data fMRI, Wilayah Kepentingan (ROI) biasanya diekstrak dan data ditukar kepada vektor 1D. Dalam tugasan ini, hanya isyarat dari korteks visual otak yang diekstrak Oleh itu, bilangan voxel (kira-kira 4000) adalah lebih kurang daripada bilangan piksel dalam imej (256*256*3). diproses dalam latitud yang sama seperti biasa Terdapat jurang yang besar dalam cara data imej digunakan.
- Disebabkan perbezaan individu, perbezaan dalam reka bentuk percubaan dan kerumitan isyarat otak, setiap set data dan setiap data individu akan mempunyai anjakan domain tertentu.
- Untuk rangsangan visual tetap, penyelidik berharap imej yang dipulihkan oleh model akan konsisten dari segi semantik namun, disebabkan perbezaan individu, setiap orang mempunyai tindak balas yang berbeza terhadap rangsangan visual ini, dan para penyelidik Semoga model itu akan mempunyai beberapa varians dan fleksibiliti.
Untuk menangani isu ini, MinD-Vis terdiri daripada dua peringkat:
- Menggunakan set data fMRI berskala besar Untuk melatih Autoencoder Bertopeng untuk mempelajari perwakilan fMRI.
- Sepadukan pengekod fMRI pra-latihan dengan LDM untuk penyaman berganda melalui penyaman perhatian silang dan penyaman langkah masa untuk melakukan sintesis bersyarat. Kemudian, kami bersama-sama memperhalusi kepala perhatian silang dalam LDM dengan menggunakan {fMRI, Imej} berpasangan.
Dua langkah ini akan diperkenalkan secara terperinci di sini.
Gambaran Keseluruhan MinD-Vis
(A) Pemodelan Otak Bertopeng Berkod Jarang (SC-MBM) (Tinjauan Keseluruhan MinD-Vis kiri)
Disebabkan redundansi maklumat spatial fMRI, walaupun jika kebanyakannya adalah Masked, data fMRI masih boleh dipulihkan. Oleh itu, pada peringkat pertama MinD-Vis, kebanyakan data fMRI bertopeng untuk menjimatkan masa pengiraan. Di sini, pengarang menggunakan pendekatan yang serupa dengan Autoencoder Bertopeng:
- Bahagikan voxel fMRI kepada tampalan
- Gunakan sama dengan saiz tampalan Tukar lapisan konvolusi bersaiz langkah 1D ke dalam pembenaman
- Tambahkan baki tampalan fMRI pada pembenaman kedudukan dan gunakannya sebagai input pengubah penglihatan
- Penyahkodan Dapatkan data yang dibina semula
- Kira kehilangan antara data yang dibina semula dan data asal
- Optimumkan model melalui perambatan belakang untuk menjadikan data yang dibina semula sebagai mungkin yang mungkin Serupa dengan data asal
- Ulang langkah 2-6 untuk melatih model akhir
SC-MBM boleh memulihkan maklumat fMRI bertopeng dengan berkesan
Reka bentuk dan Topeng ini Apakah perbezaan antara ed Autoencoder?
- Apabila pemodelan topeng digunakan pada imej semula jadi, model biasanya menggunakan nisbah saiz benam kepada tampalan yang sama dengan atau lebih besar sedikit daripada 1.
- Dalam tugasan ini, pengarang menggunakan nisbah saiz embedding-to-patch yang agak besar, yang boleh meningkatkan kapasiti maklumat dengan ketara dan mewujudkan ruang perwakilan yang besar untuk Reka Bentuk Ini juga sepadan dengan pengekodan maklumat yang jarang dalam otak*.
Eksperimen Ablasi SC-MBM
(B) LDM Berhawa Dwi (DC-LDM) (Gambaran Keseluruhan MinD-Vis kanan)
Berskala besar dalam Peringkat A Selepas pembelajaran konteks , pengekod fMRI boleh menukar data fMRI kepada perwakilan yang jarang dengan kekangan lokaliti. Di sini, penulis merumuskan tugas penyahkodan sebagai masalah penjanaan bersyarat dan menggunakan LDM terlatih untuk menyelesaikan masalah ini.
- LDM beroperasi pada ruang terpendam imej, dengan data fMRI z sebagai maklumat bersyarat, dan matlamatnya adalah untuk belajar membentuk imej melalui proses resapan belakang.
- Dalam tugas penjanaan imej, kepelbagaian dan konsistensi adalah matlamat yang bertentangan, dan fMRI kepada imej lebih bergantung pada ketekalan generatif.
- Untuk memastikan ketekalan penjanaan, pengarang menggabungkan pelaziman perhatian silang dan pelaziman langkah masa, dan menggunakan mekanisme bersyarat dengan pembenaman masa di lapisan tengah UNet.
- Mereka merumuskan semula formula objektif pengoptimuman menjadi formula berselang-seli dwi pelarasan.
Kami menunjukkan kestabilan kaedah kami dengan menyahkod imej dalam keadaan rawak berbeza beberapa kali.
Penalaan halus
Selepas pengekod fMRI dilatih terlebih dahulu oleh SC-MBM, ia dibandingkan dengan LDM pra-latihan oleh penyaman berganda disepadukan bersama. Di sini, oleh:
- Gunakan lapisan konvolusi untuk menggabungkan output pengekod ke dalam dimensi terpendam; dan bahagian lain diperbaiki ;
- Kepala perhatian silang penalaan halus adalah kunci untuk menyambungkan ruang penyaman pra-terlatih dan ruang terpendam fMRI; sambungan yang lebih jelas antara fMRI dan ciri imej akan dipelajari melalui perwakilan fMRI berkapasiti besar.
Butiran tambahanTanpa diduga, MinD-Vis boleh menyahkod beberapa butiran yang sebenarnya tidak wujud dalam imej kebenaran tanah, tetapi sangat berkaitan dengan kandungan imej. Sebagai contoh, apabila gambar adalah pemandangan semula jadi, MinD-Vis menyahkod sungai dan langit biru apabila ia adalah sebuah rumah, MinD-Vis menyahkod hiasan dalaman yang serupa. Ini mempunyai kedua-dua kelebihan dan kekurangan. Perkara yang baik ialah ini menunjukkan bahawa kita boleh menyahkod apa yang kita bayangkan; perkara yang buruk ialah ini boleh menjejaskan penilaian hasil penyahkodan.
Koleksi peralihan kegemaran
Penulis percaya apabila bilangan sampel latihan adalah sedikit, kesukaran untuk menyahkod rangsangan akan berbeza. Contohnya, set data GOD mengandungi lebih banyak sampel latihan haiwan daripada pakaian. Ini bermakna perkataan yang secara semantik serupa dengan "berbulu" lebih cenderung untuk dinyahkodkan sebagai haiwan dan bukannya pakaian, seperti yang ditunjukkan dalam imej di atas, di mana stokin dinyahkodkan sebagai biri-biri.
Tetapan percubaan
Set Data
Di sini, pengarang menggunakan tiga set data awam.Peringkat pertama pra-latihan: menggunakan Projek Human Connectome, yang menyediakan 136,000 segmen data fMRI, tiada imej, hanya fMRI.
Perhalusi Pengekod dan model generasi peringkat kedua: Set Data Penyahkodan Objek Generik (GOD) dan set data Brain, Object, Landskap (BOLD5000) telah digunakan. Kedua-dua set data ini masing-masing menyediakan 1250 dan 5254 {fMRI, Image} pasangan, yang mana 50 dan 113 telah diambil sebagai set ujian masing-masing.
- Struktur model
- Reka bentuk struktur model (ViT dan model resapan) dalam artikel ini terutamanya merujuk kepada literatur lepas. Sila rujuk teks untuk butiran parameter model. Begitu juga, mereka juga menggunakan seni bina asimetri: pengekod bertujuan untuk mempelajari perwakilan fMRI yang bermakna, manakala penyahkod cuba meramalkan tompok yang dikaburkan. Oleh itu, kami mengikuti reka bentuk sebelumnya dan menjadikan penyahkod lebih kecil, yang kami buang selepas pra-latihan.
Indeks Penilaian
Seperti kesusasteraan terdahulu, penulis juga menggunakan ketepatan klasifikasi n-way top-1 dan top-5 untuk Menilai semantik ketepatan keputusan. Ini ialah kaedah yang menilai keputusan dengan mengira ketepatan klasifikasi top-1 dan top-5 untuk n-1 kategori yang dipilih secara rawak dan kategori yang betul sepanjang berbilang percubaan. Tidak seperti pendekatan sebelumnya, di sini mereka menggunakan kaedah penilaian yang lebih langsung dan boleh ditiru, menggunakan pengelas ImageNet1K yang telah terlatih untuk menilai ketepatan semantik imej yang dijana dan bukannya menggunakan ciri buatan tangan. Selain itu, mereka menggunakan jarak permulaan Fréchet (FID) sebagai rujukan untuk menilai kualiti imej yang dihasilkan. Walau bagaimanapun, disebabkan bilangan imej yang terhad dalam set data, FID mungkin tidak menilai pengedaran imej dengan sempurna.
Kesan
Eksperimen dalam artikel ini dijalankan pada peringkat individu, iaitu model telah dilatih dan diuji pada individu yang sama. Sebagai perbandingan dengan literatur sebelumnya, keputusan untuk subjek ketiga set data GOD dilaporkan di sini, dan keputusan untuk subjek lain disenaraikan dalam Lampiran. Melalui projek ini, penulis menunjukkan kebolehlaksanaan memulihkan maklumat visual otak manusia melalui fMRI. Walau bagaimanapun, terdapat banyak isu yang perlu ditangani dalam bidang ini, seperti cara mengendalikan perbezaan antara individu dengan lebih baik, cara mengurangkan kesan bunyi dan gangguan pada penyahkodan, dan cara menggabungkan penyahkodan fMRI dengan teknik neurosains lain untuk mencapai pemahaman yang lebih komprehensif Mekanisme dan fungsi otak manusia. Pada masa yang sama, kita juga perlu lebih memahami dan menghormati isu etika dan undang-undang yang mengelilingi otak manusia dan privasi individu. Selain itu, kami juga perlu meneroka senario aplikasi yang lebih luas, seperti perubatan dan interaksi manusia-komputer, untuk mengubah teknologi ini menjadi aplikasi praktikal. Dalam bidang perubatan, teknologi penyahkodan fMRI boleh digunakan pada masa hadapan untuk membantu kumpulan khas seperti orang cacat penglihatan, orang cacat pendengaran dan juga pesakit lumpuh am untuk menyahkod pemikiran mereka. Disebabkan ketidakupayaan fizikal, mereka ini tidak dapat meluahkan fikiran dan kehendak mereka melalui kaedah komunikasi tradisional. Dengan menggunakan teknologi fMRI, saintis boleh menyahkod aktiviti otak mereka untuk mengakses pemikiran dan kehendak mereka, membolehkan mereka berkomunikasi dengan mereka secara lebih semula jadi dan cekap. Dalam bidang interaksi manusia-komputer, teknologi penyahkodan fMRI boleh digunakan untuk membangunkan antara muka dan sistem kawalan komputer manusia yang lebih pintar dan adaptif, seperti menyahkod aktiviti otak pengguna untuk mencapai pengalaman interaksi manusia-komputer yang lebih semula jadi dan cekap. Kami percaya bahawa dengan sokongan set data berskala besar + model besar + kuasa pengkomputeran, penyahkodan fMRI akan mempunyai kesan yang lebih luas dan meluas, menggalakkan neurosains kognitif dan pembangunan kecerdasan buatan daripada padang. Nota: *Asas biologi untuk mempelajari perwakilan rangsangan visual dalam otak menggunakan pengekodan jarang: Pengekodan jarang telah dicadangkan sebagai strategi untuk perwakilan maklumat deria. Penyelidikan menunjukkan bahawa rangsangan visual jarang dikodkan dalam korteks visual, yang meningkatkan kecekapan penghantaran maklumat dan mengurangkan redundansi dalam otak. Menggunakan fMRI, kandungan visual pemandangan semula jadi boleh dibina semula daripada sejumlah kecil data yang dikumpul dalam korteks visual. Pengekodan jarang boleh menjadi cara pengekodan yang cekap dalam penglihatan komputer. Artikel tersebut menyebut kaedah SC-MBM, yang membahagikan data fMRI kepada blok kecil untuk memperkenalkan kekangan lokaliti, dan kemudian mengekod setiap blok kecil ke dalam ruang vektor berdimensi tinggi, yang boleh digunakan sebagai pelajar ciri otak yang berkesan dan cekap secara biologi. , digunakan untuk pengekodan dan penyahkodan visual. Ditulis pada penghujung
Atas ialah kandungan terperinci AI tahu apa yang anda fikirkan dan melukisnya untuk anda Kod projek telah menjadi sumber terbuka. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Apabila menukar rentetan ke objek dalam vue.js, json.parse () lebih disukai untuk rentetan json standard. Untuk rentetan JSON yang tidak standard, rentetan boleh diproses dengan menggunakan ungkapan biasa dan mengurangkan kaedah mengikut format atau url yang dikodkan. Pilih kaedah yang sesuai mengikut format rentetan dan perhatikan isu keselamatan dan pengekodan untuk mengelakkan pepijat.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Ringkasan: Terdapat kaedah berikut untuk menukar array rentetan vue.js ke dalam tatasusunan objek: Kaedah asas: Gunakan fungsi peta yang sesuai dengan data yang diformat biasa. Permainan lanjutan: Menggunakan ungkapan biasa boleh mengendalikan format yang kompleks, tetapi mereka perlu ditulis dengan teliti dan dipertimbangkan. Pengoptimuman Prestasi: Memandangkan banyak data, operasi tak segerak atau perpustakaan pemprosesan data yang cekap boleh digunakan. Amalan Terbaik: Gaya Kod Jelas, Gunakan nama dan komen pembolehubah yang bermakna untuk memastikan kod ringkas.

Untuk menetapkan masa untuk Vue Axios, kita boleh membuat contoh Axios dan menentukan pilihan masa tamat: dalam tetapan global: vue.prototype. $ Axios = axios.create ({timeout: 5000}); Dalam satu permintaan: ini. $ axios.get ('/api/pengguna', {timeout: 10000}).

Cecair memproses 7 juta rekod dan membuat peta interaktif dengan teknologi geospatial. Artikel ini meneroka cara memproses lebih dari 7 juta rekod menggunakan Laravel dan MySQL dan mengubahnya menjadi visualisasi peta interaktif. Keperluan Projek Cabaran Awal: Ekstrak Wawasan berharga menggunakan 7 juta rekod dalam pangkalan data MySQL. Ramai orang mula -mula mempertimbangkan bahasa pengaturcaraan, tetapi mengabaikan pangkalan data itu sendiri: Bolehkah ia memenuhi keperluan? Adakah penghijrahan data atau pelarasan struktur diperlukan? Bolehkah MySQL menahan beban data yang besar? Analisis awal: Penapis utama dan sifat perlu dikenalpasti. Selepas analisis, didapati bahawa hanya beberapa atribut yang berkaitan dengan penyelesaiannya. Kami mengesahkan kemungkinan penapis dan menetapkan beberapa sekatan untuk mengoptimumkan carian. Carian Peta Berdasarkan Bandar

Terdapat banyak sebab mengapa permulaan MySQL gagal, dan ia boleh didiagnosis dengan memeriksa log ralat. Penyebab umum termasuk konflik pelabuhan (periksa penghunian pelabuhan dan ubah suai konfigurasi), isu kebenaran (periksa keizinan pengguna yang menjalankan perkhidmatan), ralat fail konfigurasi (periksa tetapan parameter), rasuah direktori data (memulihkan data atau membina semula ruang meja), isu ruang jadual InnoDB (semak fail ibdata1) Apabila menyelesaikan masalah, anda harus menganalisisnya berdasarkan log ralat, cari punca utama masalah, dan mengembangkan tabiat sandaran data secara teratur untuk mencegah dan menyelesaikan masalah.

Jurutera Backend Senior Remote Company Kekosongan Syarikat: Lokasi Lokasi: Jauh Pejabat Jauh Jenis: Gaji sepenuh masa: $ 130,000- $ 140,000 Penerangan Pekerjaan Mengambil bahagian dalam penyelidikan dan pembangunan aplikasi mudah alih Circle dan ciri-ciri berkaitan API awam yang meliputi keseluruhan kitaran hayat pembangunan perisian. Tanggungjawab utama kerja pembangunan secara bebas berdasarkan rubyonrails dan bekerjasama dengan pasukan react/redux/relay front-end. Membina fungsi teras dan penambahbaikan untuk aplikasi web dan bekerjasama rapat dengan pereka dan kepimpinan sepanjang proses reka bentuk berfungsi. Menggalakkan proses pembangunan positif dan mengutamakan kelajuan lelaran. Memerlukan lebih daripada 6 tahun backend aplikasi web kompleks

Pengoptimuman prestasi MySQL perlu bermula dari tiga aspek: konfigurasi pemasangan, pengindeksan dan pengoptimuman pertanyaan, pemantauan dan penalaan. 1. Selepas pemasangan, anda perlu menyesuaikan fail my.cnf mengikut konfigurasi pelayan, seperti parameter innodb_buffer_pool_size, dan tutup query_cache_size; 2. Buat indeks yang sesuai untuk mengelakkan indeks yang berlebihan, dan mengoptimumkan pernyataan pertanyaan, seperti menggunakan perintah menjelaskan untuk menganalisis pelan pelaksanaan; 3. Gunakan alat pemantauan MySQL sendiri (ShowProcessList, ShowStatus) untuk memantau kesihatan pangkalan data, dan kerap membuat semula dan mengatur pangkalan data. Hanya dengan terus mengoptimumkan langkah -langkah ini, prestasi pangkalan data MySQL diperbaiki.
