Jadual Kandungan
Tafsiran ringkasan , Tafsiran Teknikal
Penyelidikan Kajian Literatur BEVPercption
Set data yang sesuai untuk model penderiaan BEV
Kotak Alat - Kotak alat persepsi BEV
Ringkasan
Rumah Peranti teknologi AI Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

Apr 13, 2023 pm 10:31 PM
Pemanduan autonomi

Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

Apakah sebenarnya persepsi BEV? Apakah aspek persepsi BEV yang diberi perhatian oleh kedua-dua kalangan akademik dan industri pemanduan autonomi? Artikel ini akan mendedahkan jawapan untuk anda.

Dalam bidang pemanduan autonomi, membiarkan model persepsi mempelajari perwakilan pandangan mata burung (BEV) yang berkuasa adalah satu trend dan telah menarik perhatian meluas daripada industri dan akademia. Berbanding dengan kebanyakan model terdahulu dalam bidang pemanduan autonomi yang berdasarkan melaksanakan tugas seperti pengesanan, pembahagian dan penjejakan dalam pandangan hadapan atau pandangan perspektif, perwakilan Pandangan Mata Burung (BEV) membolehkan model mengenal pasti kenderaan tersumbat dengan lebih baik dan telah Memudahkan pembangunan dan penggunaan modul seterusnya (cth. perancangan, kawalan).

Adalah dapat dilihat bahawa penyelidikan persepsi BEV mempunyai potensi kesan yang besar dalam bidang pemanduan autonomi dan patut mendapat perhatian dan pelaburan jangka panjang daripada ahli akademik dan industri ? Apakah kandungan persepsi BEV yang diberi perhatian oleh pemimpin akademik dan industri dalam pemanduan autonomi? Artikel ini akan mendedahkan jawapan untuk anda melalui Tinjauan BEVPerception.

BEVPerception Survey ialah kerjasama antara Pasukan OpenDriveLab pemanduan autonomi Makmal Kecerdasan Buatan Shanghai dan Institut Penyelidikan SenseTime Kaedah pembentangan alat praktikal kertas kerjasama "Menyelidiki Persepsi Pandangan Mata Burung: Satu Tinjauan, Penilaian dan Resipi", dibahagikan kepada penyelidikan literatur terkini berdasarkan BEVPercption dan berasaskan PyTorch Dua bahagian utama kotak alat persepsi BEV sumber terbuka .

Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

  • Alamat kertas: https://arxiv.org/abs/2209.05324
  • Alamat projek: https://github.com/OpenPerceptionX/BEVPerception-Survey-Recipe

Tafsiran ringkasan , Tafsiran Teknikal

Tinjauan BEVPerception Kajian kajian literatur terkini terutamanya merangkumi tiga bahagian-kamera BEV, lidar BEV dan gabungan BEV. Kamera BEV mewakili algoritma penglihatan sahaja atau bertumpu penglihatan untuk pengesanan objek 3D atau pembahagian daripada berbilang kamera di sekeliling BEV lidar menerangkan tugas pengesanan atau pembahagian input awan titik menerangkan tugas pengesanan atau pembahagian daripada pelbagai penderia Mekanisme gabungan input; seperti kamera, lidar, sistem navigasi global, odometri, peta HD, bas CAN, dsb.

Kotak Alat Persepsi BEV ialah platform untuk pengesanan objek 3D berdasarkan kamera BEV dan digunakan dalam data Waymo Jishang menyediakan platform percubaan yang boleh menjalankan tutorial manual dan eksperimen pada set data berskala kecil.

Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

Rajah 1: Rangka Kerja Tinjauan BEVPerception

Secara khusus, BEV Camera mewakili algoritma untuk pengesanan objek 3D atau pembahagian daripada berbilang kamera sekeliling BEV mewakili penggunaan awan titik sebagai input untuk menyelesaikan tugas pengesanan atau pembahagian BEV menggunakan output berbilang penderia sebagai input, seperti kamera, LiDAR, GNSS, odometri, HD; -Peta, bas CAN, dsb.

Penyelidikan Kajian Literatur BEVPercption

Kamera BEV

Persepsi kamera BEV termasuk pengekstrakan ciri 2D Ia terdiri daripada tiga bahagian: penukar, pengubah paparan dan penyahkod 3D. Rajah di bawah menunjukkan carta aliran persepsi kamera BEV Dalam transformasi paparan, terdapat dua cara untuk mengekod maklumat 3D - satu adalah untuk meramalkan maklumat mendalam daripada ciri 2D.


Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

Rajah 2: Carta alir pengesan kamera BEV

Untuk pengekstrak ciri 2D , Di sana adalah banyak pengalaman dalam tugasan persepsi 2D yang boleh digunakan untuk rujukan dalam tugasan persepsi 3D, seperti bentuk latihan intervensi utama.

Modul penukaran paparan ialah aspek yang sangat berbeza daripada sistem persepsi 2D. Seperti yang ditunjukkan dalam rajah di atas, secara amnya terdapat dua cara untuk melakukan transformasi paparan: satu ialah transformasi daripada ruang 3D kepada ruang 2D, satu lagi ialah transformasi daripada ruang 2D kepada ruang 3D Kedua-dua kaedah transformasi ini sama ada menggunakan ruang 3D pengetahuan terdahulu tentang fizik dalam sistem atau menggunakan maklumat 3D tambahan untuk penyeliaan. Perlu diingat bahawa tidak semua kaedah persepsi 3D mempunyai modul transformasi pandangan Contohnya, beberapa kaedah mengesan objek dalam ruang 3D secara langsung daripada ciri dalam ruang 2D.

Penyahkod 3D Menerima ciri dalam ruang 2D/3D dan mengeluarkan hasil persepsi 3D. Kebanyakan penyahkod 3D direka bentuk daripada model persepsi berasaskan LiDAR. Kaedah ini melakukan pengesanan dalam ruang BEV, tetapi masih terdapat beberapa penyahkod 3D yang mengeksploitasi ciri dalam ruang 2D dan secara langsung mengundurkan penyetempatan objek 3D.

BEV lidar

Proses biasa persepsi BEV lidar adalah terutamanya untuk menggabungkan data awan titik kepada dua cabang Tukar kepada perwakilan BEV. Rajah di bawah menunjukkan carta alir pengesan lidar BEV Cawangan atas mengekstrak ciri awan titik dalam ruang 3D untuk memberikan hasil pengesanan yang lebih tepat. Cawangan bawah mengekstrak ciri BEV dalam ruang 2D, menyediakan rangkaian yang lebih cekap. Selain kaedah berasaskan titik yang beroperasi pada awan titik mentah, kaedah berasaskan voxel memuntahkan mata ke dalam grid diskret, memberikan perwakilan yang lebih cekap dengan mendiskrisikan koordinat 3D berterusan. Berdasarkan perwakilan voxel diskret, lilitan 3D atau lilitan jarang 3D boleh digunakan untuk mengekstrak ciri awan titik.

Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

Rajah 3: Carta alir pengesan lidar BEV

PEV fusion

Algoritma gabungan BEV-aware mempunyai dua kaedah: PV-aware dan BEV-aware, dan sesuai untuk akademik dan industri. Rajah di bawah menunjukkan perbandingan carta alir penderiaan PV dan pengesan BEV Perbezaan utama antara keduanya ialah modul penukaran dan gabungan 2D kepada 3D. Dalam carta alir PV-aware, hasil daripada algoritma yang berbeza mula-mula ditukar kepada ruang 3D dan kemudian digabungkan menggunakan beberapa pengetahuan terdahulu atau peraturan yang direka bentuk secara manual. Dalam carta aliran persepsi BEV, peta ciri PV akan ditukar kepada perspektif BEV, dan kemudian digabungkan dalam ruang BEV untuk mendapatkan hasil akhir, sekali gus memaksimumkan pengekalan maklumat ciri asal dan mengelakkan reka bentuk manual yang berlebihan.

Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

Rajah 4: PV sensing (kiri) dan BEV sensing (kanan) carta alir

Set data yang sesuai untuk model penderiaan BEV

Terdapat banyak set data untuk tugas penderiaan BEV. Biasanya set data terdiri daripada pelbagai adegan, dan setiap adegan mempunyai panjang yang berbeza dalam set data yang berbeza. Jadual berikut meringkaskan set data yang biasa digunakan dalam komuniti akademik. Kita dapat melihat bahawa set data Waymo mempunyai pemandangan yang lebih pelbagai dan anotasi kotak pengesanan 3D yang lebih kaya daripada set data lain.

Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

Jadual 1: Senarai set data pengesan BEV

Walau bagaimanapun, komuniti akademik semasa Tiada perisian tersedia untuk umum untuk tugas pengesanan BEV yang dibangunkan oleh Waymo. Oleh itu, kami memilih untuk membangunkan berdasarkan set data Waymo, dengan harapan dapat mempromosikan pembangunan tugas pengesan BEV pada set data Waymo.

Kotak Alat - Kotak alat persepsi BEV

BEVFormer ialah kaedah persepsi BEV yang biasa digunakan Ia menggunakan pengubah spatiotemporal untuk menukar ciri yang diekstrak oleh rangkaian tulang belakang daripada input berbilang paparan kepada ciri BEV, dan maka ciri-ciri BEV dimasukkan ke dalam kepala pengesanan untuk mendapatkan hasil pengesanan akhir. BEVFormer mempunyai dua ciri Ia mempunyai penukaran yang tepat daripada ciri imej 2D kepada ciri 3D dan boleh menggunakan ciri BEV yang diekstraknya pada kepala pengesanan yang berbeza. Kami menambah baik lagi kualiti penukaran paparan BEVFormer dan prestasi pengesanan akhir melalui satu siri kaedah.

Selepas memenangi tempat pertama dalam Cabaran Waymo CVPR 2022 bersama BEVFormer++, kami melancarkan Kotak Alat - BEV Kesedaran Kotak alat menyediakan satu set alat pemprosesan data Waymo Open Dataset yang mudah digunakan, dengan itu menyepadukan satu siri kaedah yang boleh meningkatkan prestasi model dengan ketara (termasuk tetapi tidak terhad kepada peningkatan data, kepala pengesanan, kehilangan fungsi, integrasi Model, dsb.), dan serasi dengan rangka kerja sumber terbuka yang digunakan secara meluas dalam lapangan, seperti mmdetection3d dan detectron2. Berbanding dengan set data asas Waymo, kotak alat persepsi BEV mengoptimumkan dan meningkatkan kemahiran penggunaan untuk digunakan oleh pelbagai jenis pembangun. Rajah di bawah menunjukkan contoh menggunakan kotak alat kesedaran BEV berdasarkan set data Waymo.

Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh

Rajah 5: Contoh penggunaan kotak alat berdasarkan set data Waymo

Ringkasan

  • Tinjauan BEVPerception meringkaskan situasi keseluruhan penyelidikan teknologi persepsi BEV dalam beberapa tahun kebelakangan ini, termasuk penghuraian konsep peringkat tinggi dan perbincangan terperinci yang lebih mendalam. Analisis komprehensif literatur yang berkaitan dengan penderiaan BEV merangkumi isu teras seperti anggaran kedalaman, transformasi pandangan, gabungan penderia dan penyesuaian domain, dan memberikan penjelasan yang lebih mendalam tentang aplikasi penderiaan BEV dalam sistem perindustrian.
  • Selain sumbangan teori, BEVPerception Survey juga menyediakan kotak alat yang sangat praktikal untuk meningkatkan prestasi pengesanan objek pandangan mata burung (BEV) 3D berasaskan kamera, termasuk satu siri Peningkatan data latihan strategi, reka bentuk pengekod yang cekap, reka bentuk fungsi kehilangan, peningkatan data ujian dan strategi penyepaduan model, dsb., serta pelaksanaan teknik ini pada set data Waymo. Kami berharap dapat membantu lebih ramai penyelidik menyedari "menggunakan dan mengambil" dan memberikan lebih banyak kemudahan untuk penyelidik dalam industri pemanduan autonomi.

Kami berharap Tinjauan BEVPerception bukan sahaja akan membantu pengguna dengan mudah menggunakan model persepsi BEV berprestasi tinggi, tetapi juga menjadi titik permulaan yang baik untuk pemula untuk memulakan model persepsi BEV . Kami komited untuk menembusi sempadan penyelidikan dan pembangunan dalam bidang pemanduan autonomi, dan berharap untuk berkongsi pandangan kami dan bertukar perbincangan dengan komuniti akademik untuk terus meneroka potensi aplikasi penyelidikan berkaitan pemanduan autonomi dalam dunia sebenar.

Atas ialah kandungan terperinci Daripada kertas kerja kepada kod, daripada penyelidikan canggih kepada pelaksanaan industri, memahami persepsi BEV secara menyeluruh. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Mengapakah Gaussian Splatting begitu popular dalam pemanduan autonomi sehingga NeRF mula ditinggalkan? Mengapakah Gaussian Splatting begitu popular dalam pemanduan autonomi sehingga NeRF mula ditinggalkan? Jan 17, 2024 pm 02:57 PM

Ditulis di atas & pemahaman peribadi pengarang Gaussiansplatting tiga dimensi (3DGS) ialah teknologi transformatif yang telah muncul dalam bidang medan sinaran eksplisit dan grafik komputer dalam beberapa tahun kebelakangan ini. Kaedah inovatif ini dicirikan oleh penggunaan berjuta-juta Gaussians 3D, yang sangat berbeza daripada kaedah medan sinaran saraf (NeRF), yang terutamanya menggunakan model berasaskan koordinat tersirat untuk memetakan koordinat spatial kepada nilai piksel. Dengan perwakilan adegan yang eksplisit dan algoritma pemaparan yang boleh dibezakan, 3DGS bukan sahaja menjamin keupayaan pemaparan masa nyata, tetapi juga memperkenalkan tahap kawalan dan pengeditan adegan yang tidak pernah berlaku sebelum ini. Ini meletakkan 3DGS sebagai penukar permainan yang berpotensi untuk pembinaan semula dan perwakilan 3D generasi akan datang. Untuk tujuan ini, kami menyediakan gambaran keseluruhan sistematik tentang perkembangan dan kebimbangan terkini dalam bidang 3DGS buat kali pertama.

Bagaimana untuk menyelesaikan masalah ekor panjang dalam senario pemanduan autonomi? Bagaimana untuk menyelesaikan masalah ekor panjang dalam senario pemanduan autonomi? Jun 02, 2024 pm 02:44 PM

Semalam semasa temu bual, saya telah ditanya sama ada saya telah membuat sebarang soalan berkaitan ekor panjang, jadi saya fikir saya akan memberikan ringkasan ringkas. Masalah ekor panjang pemanduan autonomi merujuk kepada kes tepi dalam kenderaan autonomi, iaitu, kemungkinan senario dengan kebarangkalian yang rendah untuk berlaku. Masalah ekor panjang yang dirasakan adalah salah satu sebab utama yang kini mengehadkan domain reka bentuk pengendalian kenderaan autonomi pintar satu kenderaan. Seni bina asas dan kebanyakan isu teknikal pemanduan autonomi telah diselesaikan, dan baki 5% masalah ekor panjang secara beransur-ansur menjadi kunci untuk menyekat pembangunan pemanduan autonomi. Masalah ini termasuk pelbagai senario yang berpecah-belah, situasi yang melampau dan tingkah laku manusia yang tidak dapat diramalkan. "Ekor panjang" senario tepi dalam pemanduan autonomi merujuk kepada kes tepi dalam kenderaan autonomi (AVs) kes Edge adalah senario yang mungkin dengan kebarangkalian yang rendah untuk berlaku. kejadian yang jarang berlaku ini

Pilih kamera atau lidar? Kajian terbaru tentang mencapai pengesanan objek 3D yang mantap Pilih kamera atau lidar? Kajian terbaru tentang mencapai pengesanan objek 3D yang mantap Jan 26, 2024 am 11:18 AM

0. Ditulis di hadapan&& Pemahaman peribadi bahawa sistem pemanduan autonomi bergantung pada persepsi lanjutan, membuat keputusan dan teknologi kawalan, dengan menggunakan pelbagai penderia (seperti kamera, lidar, radar, dll.) untuk melihat persekitaran sekeliling dan menggunakan algoritma dan model untuk analisis masa nyata dan membuat keputusan. Ini membolehkan kenderaan mengenali papan tanda jalan, mengesan dan menjejaki kenderaan lain, meramalkan tingkah laku pejalan kaki, dsb., dengan itu selamat beroperasi dan menyesuaikan diri dengan persekitaran trafik yang kompleks. Teknologi ini kini menarik perhatian meluas dan dianggap sebagai kawasan pembangunan penting dalam pengangkutan masa depan satu. Tetapi apa yang menyukarkan pemanduan autonomi ialah memikirkan cara membuat kereta itu memahami perkara yang berlaku di sekelilingnya. Ini memerlukan algoritma pengesanan objek tiga dimensi dalam sistem pemanduan autonomi boleh melihat dan menerangkan dengan tepat objek dalam persekitaran sekeliling, termasuk lokasinya,

Adakah anda benar-benar menguasai penukaran sistem koordinat? Isu berbilang sensor yang tidak dapat dipisahkan daripada pemanduan autonomi Adakah anda benar-benar menguasai penukaran sistem koordinat? Isu berbilang sensor yang tidak dapat dipisahkan daripada pemanduan autonomi Oct 12, 2023 am 11:21 AM

Artikel perintis dan utama pertama terutamanya memperkenalkan beberapa sistem koordinat yang biasa digunakan dalam teknologi pemanduan autonomi, dan cara melengkapkan korelasi dan penukaran antara mereka, dan akhirnya membina model persekitaran bersatu. Fokus di sini adalah untuk memahami penukaran daripada kenderaan kepada badan tegar kamera (parameter luaran), penukaran kamera kepada imej (parameter dalaman) dan penukaran unit imej kepada piksel. Penukaran daripada 3D kepada 2D akan mempunyai herotan, terjemahan, dsb. Perkara utama: Sistem koordinat kenderaan dan sistem koordinat badan kamera perlu ditulis semula: sistem koordinat satah dan sistem koordinat piksel Kesukaran: herotan imej mesti dipertimbangkan Kedua-dua penyahherotan dan penambahan herotan diberi pampasan pada satah imej. 2. Pengenalan Terdapat empat sistem penglihatan secara keseluruhannya: sistem koordinat satah piksel (u, v), sistem koordinat imej (x, y), sistem koordinat kamera () dan sistem koordinat dunia (). Terdapat hubungan antara setiap sistem koordinat,

Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Feb 28, 2024 pm 07:20 PM

Ramalan trajektori memainkan peranan penting dalam pemanduan autonomi Ramalan trajektori pemanduan autonomi merujuk kepada meramalkan trajektori pemanduan masa hadapan kenderaan dengan menganalisis pelbagai data semasa proses pemanduan kenderaan. Sebagai modul teras pemanduan autonomi, kualiti ramalan trajektori adalah penting untuk kawalan perancangan hiliran. Tugas ramalan trajektori mempunyai timbunan teknologi yang kaya dan memerlukan kebiasaan dengan persepsi dinamik/statik pemanduan autonomi, peta ketepatan tinggi, garisan lorong, kemahiran seni bina rangkaian saraf (CNN&GNN&Transformer), dll. Sangat sukar untuk bermula! Ramai peminat berharap untuk memulakan ramalan trajektori secepat mungkin dan mengelakkan perangkap Hari ini saya akan mengambil kira beberapa masalah biasa dan kaedah pembelajaran pengenalan untuk ramalan trajektori! Pengetahuan berkaitan pengenalan 1. Adakah kertas pratonton teratur? A: Tengok survey dulu, hlm

SIMPL: Penanda aras ramalan gerakan berbilang ejen yang mudah dan cekap untuk pemanduan autonomi SIMPL: Penanda aras ramalan gerakan berbilang ejen yang mudah dan cekap untuk pemanduan autonomi Feb 20, 2024 am 11:48 AM

Tajuk asal: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving Paper pautan: https://arxiv.org/pdf/2402.02519.pdf Pautan kod: https://github.com/HKUST-Aerial-Robotics/SIMPL Unit pengarang: Universiti Sains Hong Kong dan Teknologi Idea Kertas DJI: Kertas kerja ini mencadangkan garis dasar ramalan pergerakan (SIMPL) yang mudah dan cekap untuk kenderaan autonomi. Berbanding dengan agen-sen tradisional

SOTA terbaharu nuScenes |. SparseAD: Pertanyaan jarang membantu pemanduan autonomi hujung ke hujung yang cekap! SOTA terbaharu nuScenes |. SparseAD: Pertanyaan jarang membantu pemanduan autonomi hujung ke hujung yang cekap! Apr 17, 2024 pm 06:22 PM

Ditulis di hadapan & titik permulaan Paradigma hujung ke hujung menggunakan rangka kerja bersatu untuk mencapai pelbagai tugas dalam sistem pemanduan autonomi. Walaupun kesederhanaan dan kejelasan paradigma ini, prestasi kaedah pemanduan autonomi hujung ke hujung pada subtugas masih jauh ketinggalan berbanding kaedah tugasan tunggal. Pada masa yang sama, ciri pandangan mata burung (BEV) padat yang digunakan secara meluas dalam kaedah hujung ke hujung sebelum ini menyukarkan untuk membuat skala kepada lebih banyak modaliti atau tugasan. Paradigma pemanduan autonomi hujung ke hujung (SparseAD) tertumpu carian jarang dicadangkan di sini, di mana carian jarang mewakili sepenuhnya keseluruhan senario pemanduan, termasuk ruang, masa dan tugas, tanpa sebarang perwakilan BEV yang padat. Khususnya, seni bina jarang bersatu direka bentuk untuk kesedaran tugas termasuk pengesanan, penjejakan dan pemetaan dalam talian. Di samping itu, berat

Mari kita bincangkan tentang sistem pemanduan autonomi hujung ke hujung dan generasi seterusnya, serta beberapa salah faham tentang pemanduan autonomi hujung ke hujung? Mari kita bincangkan tentang sistem pemanduan autonomi hujung ke hujung dan generasi seterusnya, serta beberapa salah faham tentang pemanduan autonomi hujung ke hujung? Apr 15, 2024 pm 04:13 PM

Pada bulan lalu, atas sebab-sebab yang diketahui umum, saya telah mengadakan pertukaran yang sangat intensif dengan pelbagai guru dan rakan sekelas dalam industri. Topik yang tidak dapat dielakkan dalam pertukaran secara semula jadi adalah hujung ke hujung dan Tesla FSDV12 yang popular. Saya ingin mengambil kesempatan ini untuk menyelesaikan beberapa buah fikiran dan pendapat saya pada masa ini untuk rujukan dan perbincangan anda. Bagaimana untuk mentakrifkan sistem pemanduan autonomi hujung ke hujung, dan apakah masalah yang sepatutnya dijangka diselesaikan hujung ke hujung? Menurut definisi yang paling tradisional, sistem hujung ke hujung merujuk kepada sistem yang memasukkan maklumat mentah daripada penderia dan secara langsung mengeluarkan pembolehubah yang membimbangkan tugas. Sebagai contoh, dalam pengecaman imej, CNN boleh dipanggil hujung-ke-hujung berbanding kaedah pengekstrak ciri + pengelas tradisional. Dalam tugas pemanduan autonomi, masukkan data daripada pelbagai penderia (kamera/LiDAR

See all articles