


Google menggunakan semula algoritma klasik dari 30 tahun yang lalu, dan CV memperkenalkan pembelajaran pengukuhan: Adakah RLHF visual akan datang?
Kepopularan ChatGPT jelas kepada semua, dan teknologi di sebalik kejayaannya diselia penalaan halus arahan dan pembelajaran pengukuhan berdasarkan maklum balas manusia. Teknik ini juga berkembang secara beransur-ansur ke dalam bidang AI lain, termasuk penglihatan komputer (CV).
Kita tahu bahawa apabila menangani output yang kompleks dalam penglihatan komputer, kriteria utama untuk kejayaan bukanlah seberapa baik model mengoptimumkan sasaran latihan, tetapi seberapa baik keupayaan ramalan sepadan dengan tugas . Iaitu, prestasi model untuk kegunaan yang dimaksudkan.
Untuk meneruskan konsistensi ini, sesetengah penyelidik telah membuat beberapa penambahbaikan dalam seni bina model, data, pengoptimuman, pensampelan, pasca pemprosesan, dsb. Sebagai contoh, dalam tugas pengesanan objek, penyelidik menggunakan NMS (penindasan bukan maksimum), kehilangan global berasaskan set dan menukar data input untuk mendapatkan model dengan tingkah laku yang lebih baik pada masa ujian. Walaupun kaedah ini membawa faedah yang ketara, ia selalunya hanya berguna untuk tugasan tertentu dan hanya secara tidak langsung mengoptimumkan risiko misi.
Bukan sahaja CV, malah pemprosesan bahasa semula jadi (NLP), pembelajaran pengukuhan (RL) dan bidang lain turut mengkaji fenomena ini secara meluas. Dalam domain ini, sangat sukar untuk merumuskan matlamat pengoptimuman untuk tugasan yang kurang jelas, seperti terjemahan atau penjanaan ringkasan. Apabila menangani masalah jenis ini, pendekatan yang popular ialah belajar meniru output contoh dan kemudian melakukan pembelajaran tetulang untuk menyelaraskan model dengan fungsi ganjaran . Bidang NLP telah menghasilkan hasil yang menarik menggunakan pendekatan ini, yang menggunakan model bahasa pra-terlatih yang besar dan ganjaran yang ditakrifkan oleh maklum balas manusia untuk menangani tugasan yang sukar ditentukan.
Tambahan pula, kaedah yang sama digunakan secara meluas dalam tugasan kapsyen imej, di mana CIDEr (yang dicadangkan oleh Vedantam et al. 2015) digunakan sebagai ganjaran. Namun begitu, sepanjang pengetahuan kami, pengoptimuman ganjaran belum pernah diterokai dalam tugas penglihatan komputer (bukan tekstual).
Baru-baru ini, penyelidik dari pasukan Google Brain telah membuktikan dalam kertas kerja "Menala model penglihatan komputer dengan ganjaran tugas" bahawa menggunakan algoritma REINFORCE (yang dicadangkan oleh Williams pada tahun 1992 ) Penalaan model pra-latihan dengan fungsi ganjaran boleh digunakan di luar kotak untuk pelbagai tugas penglihatan komputer .
Malah, banyak kajian tentang tugasan pembelajaran pengukuhan akan menyebut algoritma REINFORCE Williams, yang menunjukkan kepentingan algoritma ini. Boleh dikatakan bahawa algoritma REINFORCE ialah wakil tipikal bagi kecerunan dasar dan juga pembelajaran pengukuhan.
Alamat kertas: https://arxiv.org/pdf/2302.08242v1.pdf
Rajah 1 Beberapa hasil utama dibentangkan, terutamanya termasuk penambahbaikan kuantitatif dan kualitatif yang dibawa oleh pengoptimuman ganjaran dalam pengesanan objek, pembahagian panorama dan pewarnaan imej. Kaedah yang dicadangkan dalam kajian ini adalah mudah dan berkesan dalam mengendalikan pelbagai tugas CV, menunjukkan kepelbagaian dan kebolehsuaiannya. Walaupun kertas kerja ini terutamanya menggunakan ganjaran dalam bentuk metrik penilaian, keputusan awal ini menunjukkan bahawa kaedah ini juga boleh menjadi cara yang berkesan untuk mengoptimumkan model penglihatan komputer yang mempunyai ganjaran yang lebih kompleks dan sukar untuk ditentukan, seperti maklum balas manusia atau prestasi keseluruhan .
Pengguna Twitter memberikan ringkasan yang agak menyeluruh tentang artikel ini, iaitu fungsi yang dilaksanakan dalam artikel ini ialah menggunakan RL untuk melaraskan pra- model visual terlatih. Motivasi untuk penyelidikan telah diilhamkan oleh kejayaan pembelajaran pengukuhan LLM kesannya adalah peningkatan yang ketara dalam prestasi dalam pengesanan sasaran, segmentasi panorama, dsb. Beliau juga menyatakan bahawa penyelidikan ini mungkin cara yang berkesan untuk mencapai RLHF visual (Pembelajaran Pengukuhan daripada Maklum Balas Manusia).
Sumber imej: https://twitter.com/johnjnay/status /1627009121378598912
Ganjaran
Tanpa kehilangan generalisasi, kajian menggambarkan tugas CV sebagai proses pembelajaran fungsi yang memetakan input x (iaitu imej) kepada output y = [y_1, y_1,. .., y_n] (jujukan token teks, jujukan kotak sempadan, dsb.). Penyelidikan ini bertujuan untuk mempelajari taburan bersyarat P (y|x, θ) dengan θ sebagai parameter untuk memaksimumkan fungsi ganjaran R. Untuk menggunakan formula abstrak untuk menerangkannya, artikel ini akan menyelesaikan masalah pengoptimuman berikut.
Masalahnya ada, dan langkah seterusnya ialah cara menyelesaikannya. Artikel ini dibahagikan kepada dua langkah: pertama, gunakan anggaran kemungkinan maksimum Pra-latih model, kemudian gunakan algoritma REINFORCE untuk menala model. Mari kita lihat proses khusus dua langkah ini:
Pralatihan kemungkinan maksimum
Parameter θ mula-mula dianggarkan menggunakan prinsip kemungkinan maksimum dan pengedaran data latihan ditangkap. Ini dicapai menggunakan algoritma penurunan kecerunan, yang berfungsi dengan memaksimumkan kemungkinan log data latihan. Algoritma 1 dan Rajah 2 menerangkan langkah pengoptimuman MLE (anggaran kemungkinan maksimum), yang merupakan kaedah yang paling biasa untuk model latihan. Melengkapkan langkah ini akan menghasilkan model MLE.
Algoritma REINFORC memaksimumkan ganjaran
Untuk mengoptimumkan model MLE dengan lebih baik untuk menyesuaikan diri dengan risiko tugas, ia juga perlu untuk memaksimumkan fungsi ganjaran. Untuk input x yang diberikan, kajian ini menggunakan algoritma REINFORCE untuk menganggarkan kecerunan ganjaran yang dijangkakan untuk x yang diberikan Formulanya adalah seperti berikut:
<.>Pseudokod Algoritma 2 disediakan dan Rajah 3 menggambarkan proses:
Seterusnya, mari kita lihat prestasi kaedah yang dicadangkan dalam artikel ini mengenai tugas visual.
Segmentasi Panorama
Seperti yang ditunjukkan dalam Jadual 1 di bawah, proses Penalaan meningkatkan model MLE dengan ketara. Keputusan selepas pemeriksaan visual menunjukkan bahawa model selepas Penalaan lebih baik untuk mengelakkan ramalan yang tidak koheren, terutamanya untuk objek berskala kecil, lihat Rajah 1.
Pengesanan sasaran
Jadual 2 menunjukkan bahawa melalui pengoptimuman, kajian ini telah meningkatkan dengan ketara skor mAP model MLE asal daripada 39.2% kepada 54.3%. Dalam Pix2seq, model ViT-B bersaiz sama dengan resolusi 1333×1333 lebih besar sedikit dan banyak heuristik mencapai 47.1%. Apabila menggunakan tulang belakang ViT-L yang lebih besar, Pix2seq melaporkan hasil pengesanan sasaran terbaik sebanyak 50.0%.
Mewarna
Hasil kualitatif yang dibentangkan dalam Rajah 4 jelas menunjukkan bahawa model baharu secara konsisten menghasilkan imej yang lebih berwarna.
Penerangan Imej
Keputusan Jadual 3 menunjukkan bahawa menggunakan kaedah yang dicadangkan boleh menambah baik model MLE, yang konsisten dengan pemerhatian sebelumnya dalam literatur, menunjukkan keberkesanan kaedah ini untuk menyesuaikan risiko tugas tertentu.
Atas ialah kandungan terperinci Google menggunakan semula algoritma klasik dari 30 tahun yang lalu, dan CV memperkenalkan pembelajaran pengukuhan: Adakah RLHF visual akan datang?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

AI memang mengubah matematik. Baru-baru ini, Tao Zhexuan, yang telah mengambil perhatian terhadap isu ini, telah memajukan keluaran terbaru "Buletin Persatuan Matematik Amerika" (Buletin Persatuan Matematik Amerika). Memfokuskan pada topik "Adakah mesin akan mengubah matematik?", ramai ahli matematik menyatakan pendapat mereka Seluruh proses itu penuh dengan percikan api, tegar dan menarik. Penulis mempunyai barisan yang kuat, termasuk pemenang Fields Medal Akshay Venkatesh, ahli matematik China Zheng Lejun, saintis komputer NYU Ernest Davis dan ramai lagi sarjana terkenal dalam industri. Dunia AI telah berubah secara mendadak Anda tahu, banyak artikel ini telah dihantar setahun yang lalu.

Prestasi JAX, yang dipromosikan oleh Google, telah mengatasi Pytorch dan TensorFlow dalam ujian penanda aras baru-baru ini, menduduki tempat pertama dalam 7 penunjuk. Dan ujian tidak dilakukan pada TPU dengan prestasi JAX terbaik. Walaupun dalam kalangan pembangun, Pytorch masih lebih popular daripada Tensorflow. Tetapi pada masa hadapan, mungkin lebih banyak model besar akan dilatih dan dijalankan berdasarkan platform JAX. Model Baru-baru ini, pasukan Keras menanda aras tiga hujung belakang (TensorFlow, JAX, PyTorch) dengan pelaksanaan PyTorch asli dan Keras2 dengan TensorFlow. Pertama, mereka memilih satu set arus perdana

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi

FP8 dan ketepatan pengiraan titik terapung yang lebih rendah bukan lagi "paten" H100! Lao Huang mahu semua orang menggunakan INT8/INT4, dan pasukan Microsoft DeepSpeed memaksa diri mereka menjalankan FP6 pada A100 tanpa sokongan rasmi daripada Nvidia. Keputusan ujian menunjukkan bahawa kaedah baharu TC-FPx FP6 kuantisasi pada A100 adalah hampir atau kadangkala lebih pantas daripada INT4, dan mempunyai ketepatan yang lebih tinggi daripada yang terakhir. Selain itu, terdapat juga sokongan model besar hujung ke hujung, yang telah bersumberkan terbuka dan disepadukan ke dalam rangka kerja inferens pembelajaran mendalam seperti DeepSpeed. Keputusan ini juga mempunyai kesan serta-merta pada mempercepatkan model besar - di bawah rangka kerja ini, menggunakan satu kad untuk menjalankan Llama, daya pemprosesan adalah 2.65 kali lebih tinggi daripada dua kad. satu
