


AI menyelesaikan masalah matematik kolej dalam beberapa saat, mencapai kadar ketepatan lebih daripada 80%, dan juga bertindak sebagai guru soalan
Mungkin soalan ujian matematik yang anda ambil adalah dijana mesin.
Pelajar MIT boleh menyelesaikan topik matematik seperti kalkulus multivariate, persamaan pembezaan dan algebra linear tanpa sebarang usaha, tetapi ini model pembelajaran mesin terbantut. Kerana model pembelajaran mesin hanya boleh menjawab soalan matematik peringkat sekolah rendah atau sekolah menengah, dan mereka tidak selalu menemui jawapan yang betul.
Kini, penyelidik dari MIT, Universiti Columbia, Universiti Harvard dan University of Waterloo menggunakan pembelajaran sampel kecil dan Codex OpenAI untuk mensintesis program secara automatik dan menyelesaikannya dalam beberapa saat masalah matematik dan mencapai tahap manusia. Penyelidikan itu diterbitkan dalam Prosiding Akademi Sains Kebangsaan (PNAS).
Selain itu, model ini boleh menerangkan penyelesaian yang dihasilkan dan dengan cepat menjana masalah matematik kolej baharu. Apabila penyelidik menunjukkan soalan yang dihasilkan oleh mesin ini kepada pelajar, pelajar tidak dapat mengetahui sama ada soalan itu dihasilkan oleh algoritma atau manusia.
Penyelidikan ini juga boleh digunakan untuk memudahkan penjanaan kandungan kursus, yang amat berguna untuk sekolah yang mempunyai beribu-ribu pelajar dan kursus dalam talian terbuka besar-besaran (MOOC). Sistem ini juga boleh bertindak sebagai tutor dalam talian, menunjukkan kepada pelajar langkah-langkah untuk menyelesaikan masalah matematik.
Alamat kertas: https://www.pnas.org/doi/epdf/10.1073/pnas.2123433119
Kaedah kajian ini menggabungkan tiga inovasi:
- Tidak seperti pra-latihan hanya pada teks, kajian ini Walaupun pra-latihan pada teks, penalaan halus juga dilakukan pada kod;
- Menggunakan pembelajaran sampel kecil untuk mensintesis program boleh menyelesaikan masalah matematik dengan betul; Penyelidikan boleh menyelesaikan masalah, menjelaskan penyelesaian, dan menjana soalan baharu.
- Contoh soalan baharu yang dihasilkan oleh penyelidikan ini adalah seperti berikut.
Model yang boleh menjawab, menyelesaikan dan mengemukakan soalan
Kajian ini memilih 25 masalah secara rawak daripada tujuh kursus: Kalkulus Pembolehubah Tunggal MIT 18.01, Kalkulus Berbilang Pembolehubah 18.02, Persamaan Pembezaan 18.03, 18.05 Pengenalan kepada Kebarangkalian dan Statistik Alternatif 18.06, 6. Sains Komputer, dan COMS3251 Computational Linear Algebra dari Columbia University.
Untuk dataset MATH, kajian secara rawak memilih 15 soalan daripada enam topik dalam dataset (Algebra, Pengiraan dan Kebarangkalian, Algebra Pertengahan, Teori Nombor, Algebra Awal dan Kalkulus) .
Sebelum memasukkan tugas pengaturcaraan ini ke dalam rangkaian saraf, penyelidik menambah langkah baharu yang membolehkan mereka menjadi lebih baik daripada percubaan sebelumnya.
Ia berbeza daripada rangkaian seperti GPT-3 yang hanya pra-latihan pada teks. Mereka mengubah masalah ini menjadi tugas pengaturcaraan dan menggunakan sintesis program dan teknik pembelajaran beberapa pukulan. Mengubah masalah matematik kepada tugas pengaturcaraan boleh semudah menulis semula masalah mencari jarak antara dua titik seperti menulis atur cara untuk mencari perbezaan antara dua titik.
Perlu dinyatakan bahawa penyelidikan ini bukan sahaja Pra-latihan Codex pada teks, tetapi juga memperhalusi kod tersebut supaya ia boleh menjana program untuk menyelesaikan masalah matematik berskala besar.
Model pra-latihan menunjukkan berjuta-juta contoh kod daripada repositori dalam talian. Oleh kerana data latihan model termasuk berjuta-juta perkataan bahasa semula jadi dan berjuta-juta baris kod, ia boleh mempelajari hubungan antara coretan teks dan coretan kod.
Seperti yang ditunjukkan dalam rajah di bawah, kajian ini menggunakan pembelajaran sifar pukulan dan pukulan kecil untuk menjana program secara automatik yang boleh menyelesaikan 81% masalah matematik. Mereka kemudian menggunakan Codex untuk mentafsir program yang dihasilkan. Program yang dihasilkan boleh mengeluarkan jawapan dalam pelbagai bentuk. Sebagai contoh, mengira dan menggambarkan bentuk geometri penguraian nilai tunggal (SVD) bukan sahaja memberikan jawapan yang betul, tetapi juga penjelasan yang sepadan! Gunakan rangkaian saraf OpenAI Codex untuk menyelesaikan, mentafsir dan menjana masalah matematik.
Drori, salah seorang pengarang kertas kerja, menjelaskan bahawa banyak masalah matematik boleh diselesaikan dengan graf atau pokok, tetapi ia sukar untuk menulis masalah dalam teks yang ditukar kepada perwakilan ini. Walau bagaimanapun, kerana model telah mempelajari hubungan antara teks dan kod, ia boleh menukar soalan teks kepada kod dengan hanya memberikan beberapa contoh kod soalan dan kemudian menjalankan kod untuk menjawab soalan.
“Apabila anda bertanya soalan menggunakan teks sahaja, sukar bagi model pembelajaran mesin untuk memberikan jawapan, walaupun jawapannya mungkin dalam teks dan sintesis program, "kata Drori.
Drori juga menambah bahawa kerja ini adalah yang pertama untuk menyelesaikan masalah matematik sarjana muda dan meningkatkan ketepatan daripada 8% kepada lebih daripada 80%.
Tambah konteks
Menterjemah masalah matematik kepada tugas pengaturcaraan tidak selalu mudah. Sesetengah masalah memerlukan penyelidik menambah konteks supaya rangkaian saraf dapat menangani masalah dengan betul. Seorang pelajar akan mempelajari pengetahuan latar belakang ini semasa mengikuti kursus, tetapi rangkaian saraf tidak mempunyai pengetahuan latar belakang ini melainkan dinyatakan secara eksplisit oleh penyelidik.
Sebagai contoh, mereka perlu menjelaskan bahawa rangkaian dalam teks merujuk kepada rangkaian saraf dan bukan rangkaian komunikasi. Atau mereka mungkin perlu memberitahu model pakej pengaturcaraan yang hendak digunakan. Mereka juga mungkin perlu memberikan definisi tertentu, contohnya dalam soalan tentang bermain kad, mereka mungkin perlu memberitahu model bahawa setiap dek mengandungi 52 kad.
Kajian ini membekalkan tugas pengaturcaraan ini secara automatik, bersama dengan konteks dan contoh yang disertakan, ke dalam rangkaian neural yang telah dilatih dan diperhalusi, yang menghasilkan rangkaian neural yang biasanya menghasilkan jawapan yang betul program. Lebih daripada 80% soalan adalah betul.
Para penyelidik juga menggunakan model mereka untuk menjana soalan dengan memberikan rangkaian saraf satu siri soalan matematik tentang topik dan kemudian membiarkannya mencipta soalan baharu. Sebagai contoh, terdapat masalah pengesanan kuantum garis mendatar dan menegak, yang mewujudkan masalah baru pengesanan kuantum pepenjuru. Jadi ia bukan hanya mencipta masalah baru dengan menggantikan nilai dan pembolehubah dalam masalah sedia ada.
Soalan yang dikemukakan manusia berbanding soalan yang dijana oleh mesin
Para penyelidik menguji soalan ini dengan menunjukkannya kepada pelajar kolej. Para penyelidik secara rawak memberikan pelajar 10 masalah daripada kursus matematik sarjana muda lima dicipta oleh manusia dan lima dijana oleh mesin.
Pelajar tidak dapat mengetahui sama ada soalan yang dijana oleh mesin dijana oleh algoritma atau manusia, dan mereka memberikan penilaian yang sama tentang kesukaran dan kesesuaian kursus.
Walau bagaimanapun, Drori menyatakan bahawa kerja ini tidak bertujuan untuk menggantikan profesor manusia.
"Kini ketepatan telah mencapai 80%, tetapi ia tidak akan mencapai 100%. Setiap kali anda menyelesaikan masalah, seseorang akan bertanya masalah yang lebih sukar. Tetapi kerja ini Ia membuka medan untuk orang ramai mula menggunakan pembelajaran mesin untuk menyelesaikan masalah yang semakin sukar, kami fikir ini akan memberi kesan besar kepada pendidikan tinggi," kata Drori.
Pasukan penyelidik teruja dengan kejayaan pendekatan mereka dan telah mengembangkan kerja mereka untuk mengendalikan pembuktian matematik. Mereka juga merancang untuk menangani beberapa batasan pada masa ini, model tidak boleh menggunakan komponen visual. Menjawab soalan juga gagal menyelesaikan masalah yang sukar dikira kerana kerumitan pengiraan.
Selain mengatasi halangan ini, penyelidikan juga bertujuan untuk menskalakan model kepada ratusan kursus. Dengan kursus ini, mereka akan menjana lebih banyak data untuk meningkatkan automasi dan memberikan pandangan tentang reka bentuk kursus dan kurikulum.
Atas ialah kandungan terperinci AI menyelesaikan masalah matematik kolej dalam beberapa saat, mencapai kadar ketepatan lebih daripada 80%, dan juga bertindak sebagai guru soalan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





Binance adalah tuan rumah ekosistem perdagangan aset digital global, dan ciri -cirinya termasuk: 1. Jumlah dagangan harian purata melebihi $ 150 bilion, menyokong 500 pasangan perdagangan, yang meliputi 98% mata wang arus perdana; 2. Matriks inovasi meliputi pasaran Derivatif, susun atur Web3 dan sistem pendidikan; 3. Kelebihan teknikal adalah enjin yang sepadan dengan milisaat, dengan jumlah pemprosesan puncak sebanyak 1.4 juta transaksi sesaat; 4. Kemajuan pematuhan memegang lesen 15 negara dan menetapkan entiti yang mematuhi di Eropah dan Amerika Syarikat.

Selepas peningkatan ETH, orang baru harus mengamalkan strategi berikut untuk mengelakkan kerugian: 1. Lakukan kerja rumah mereka dan memahami pengetahuan asas dan meningkatkan kandungan ETH; 2. Posisi kawalan, menguji perairan dalam jumlah yang kecil dan mempelbagaikan pelaburan; 3. Buat pelan dagangan, jelaskan matlamat dan tetapkan titik kehilangan berhenti; 4. Profil secara rasional dan elakkan membuat keputusan emosi; 5. Pilih platform perdagangan formal dan boleh dipercayai; 6. Pertimbangkan jangka panjang untuk mengelakkan kesan turun naik jangka pendek.

Pertukaran memainkan peranan penting dalam pasaran cryptocurrency hari ini. Mereka bukan sahaja platform untuk pelabur untuk berdagang, tetapi juga sumber kecairan pasaran dan penemuan harga. Pertukaran mata wang maya terbesar di dunia di kalangan sepuluh teratas, dan pertukaran ini bukan sahaja jauh ke hadapan dalam jumlah dagangan, tetapi juga mempunyai kelebihan mereka sendiri dalam pengalaman pengguna, perkhidmatan keselamatan dan inovatif. Pertukaran yang atas senarai biasanya mempunyai pangkalan pengguna yang besar dan pengaruh pasaran yang luas, dan jumlah dagangan dan jenis aset mereka sering sukar dicapai oleh bursa lain.

Faktor kenaikan harga mata wang maya termasuk: 1. Peningkatan permintaan pasaran, 2. Menurunkan bekalan, 3. Berita positif yang dirangsang, 4. Sentimen pasaran optimis, 5. Persekitaran makroekonomi; Faktor penurunan termasuk: 1. Mengurangkan permintaan pasaran, 2. Peningkatan bekalan, 3.

Pertukaran teratas termasuk: 1. Binance, jumlah dagangan terbesar di dunia, menyokong 600 mata wang, dan yuran pengendalian tempat adalah 0.1%; 2. Okx, platform seimbang, menyokong 708 pasangan dagangan, dan yuran pengendalian kontrak kekal adalah 0.05%; 3. Gate.io, meliputi 2700 mata wang kecil, dan yuran pengendalian tempat ialah 0.1%-0.3%; 4. Coinbase, penanda aras pematuhan AS, yuran pengendalian tempat adalah 0.5%; 5. Kraken, keselamatan tertinggi, dan audit rizab tetap.

Platform yang mempunyai prestasi cemerlang dalam perdagangan, keselamatan dan pengalaman pengguna yang dimanfaatkan pada tahun 2025 adalah: 1. Okx, sesuai untuk peniaga frekuensi tinggi, menyediakan sehingga 100 kali leverage; 2. Binance, sesuai untuk peniaga berbilang mata wang di seluruh dunia, memberikan 125 kali leverage tinggi; 3. Gate.io, sesuai untuk pemain derivatif profesional, menyediakan 100 kali leverage; 4. Bitget, sesuai untuk orang baru dan peniaga sosial, menyediakan sehingga 100 kali leverage; 5. Kraken, sesuai untuk pelabur mantap, menyediakan 5 kali leverage; 6. Bybit, sesuai untuk penjelajah altcoin, menyediakan 20 kali leverage; 7. Kucoin, sesuai untuk peniaga kos rendah, menyediakan 10 kali leverage; 8. Bitfinex, sesuai untuk bermain senior

Pertukaran yang menyokong urus niaga rantaian: 1. Binance, 2. Uniswap, 3 Sushiswap, 4. Kewangan Curve, 5. Thorchain, 6. 1 inci Pertukaran, 7.

Worldcoin (WLD) menonjol dalam pasaran cryptocurrency dengan mekanisme pengesahan biometrik dan perlindungan privasi yang unik, menarik perhatian banyak pelabur. WLD telah melakukan yang luar biasa di kalangan altcoin dengan teknologi inovatifnya, terutamanya dalam kombinasi dengan teknologi kecerdasan buatan terbuka. Tetapi bagaimanakah aset digital akan berkelakuan dalam beberapa tahun akan datang? Mari kita meramalkan harga masa depan WLD bersama -sama. Ramalan harga WLD 2025 dijangka mencapai pertumbuhan yang signifikan di WLD pada tahun 2025. Analisis pasaran menunjukkan bahawa harga WLD purata boleh mencapai $ 1.31, dengan maksimum $ 1.36. Walau bagaimanapun, dalam pasaran beruang, harga mungkin jatuh ke sekitar $ 0.55. Harapan pertumbuhan ini disebabkan terutamanya oleh WorldCoin2.
