Python ialah bahasa yang sangat baik untuk analisis data kerana ia mengandungi pelbagai struktur data, modul dan alatan.
Python mudah dipelajari dan sintaksnya agak mudah. Ia ialah bahasa sains data yang popular kerana ia berkuasa dan mudah digunakan. Python ialah bahasa yang sangat baik untuk analisis data kerana ia mengandungi pelbagai struktur data, modul dan alatan.
Terdapat banyak sebab untuk menggunakan Python untuk sains data:
Terdapat beberapa perpustakaan Python dengan keupayaan sains data yang patut disebut.
NumPy ialah analisis data dan perpustakaan pengkomputeran saintifik yang popular. Ia mempunyai pelbagai struktur data termasuk tatasusunan, senarai, tupel dan matriks.
IPython ialah cangkerang interaktif untuk Python yang memudahkan untuk meneroka data, menjalankan kod dan berkongsi hasil dengan pengguna lain. Ia menyediakan satu set keupayaan analisis data yang kaya, termasuk perancangan sebaris dan pelaksanaan kod.
SciPy ialah koleksi perpustakaan matematik untuk analisis data, pemodelan dan pengkomputeran saintifik. Ia termasuk alatan untuk pemprosesan data, algebra linear, pengimejan, kebarangkalian dan banyak lagi.
Panda ialah pustaka analisis data dan visualisasi data yang berkuasa. Ia mempunyai beberapa ciri unik, termasuk bingkai data yang serupa dengan jadual Excel tetapi boleh menyimpan lebih banyak data dan operasi analisis data yang berkuasa seperti pengisihan dan pengumpulan.
Terdapat banyak cara untuk menggunakan Python untuk meningkatkan kerja sains data anda. Berikut ialah beberapa petua:
Pertama, saya akan membincangkan cara menggunakan panda. Pandas ialah perpustakaan analisis data yang memudahkan untuk bekerja dengan bingkai data, set data dan operasi analisis data. Ia menyediakan antara muka data peringkat tinggi yang memudahkan akses dan pemprosesan data. Panda boleh berfungsi dengan pelbagai jenis data, termasuk tatasusunan NumPy, fail teks dan pangkalan data hubungan. Pandas juga mempunyai alat analisis data yang berkuasa, termasuk pemplotan data dan fungsi analisis data. Pandas membantu anda menganalisis data anda dengan cepat dan mudah.
Kedua, saya akan membincangkan cara menggunakan NumPy. NumPy ialah perpustakaan Python yang berkuasa yang memudahkan kerja dengan tatasusunan dan matriks berbilang dimensi yang besar. NumPy juga menyediakan banyak ciri berguna lain, seperti alat untuk menyepadukan kod C/C++, rutin algebra linear dan fungsi transformasi Fourier. Jika anda melakukan apa-apa jenis pengiraan saintifik atau berangka dalam Python, NumPy patut diperiksa. Salah satu ciri terpenting NumPy ialah keupayaannya untuk melakukan vektorisasi. Vektorisasi ialah teknik berkuasa yang boleh meningkatkan prestasi kod anda. NumPy menyediakan antara muka yang mudah digunakan untuk mengvektorkan kod anda. Hanya tambahkan penghias @vectorize pada mana-mana fungsi yang anda mahu vektorize.
Akhir sekali, saya akan membincangkan cara menggunakan SciPy. SciPy ialah ekosistem perisian sumber terbuka berasaskan Python untuk matematik, sains dan kejuruteraan. Ia termasuk modul untuk algebra linear, pengoptimuman, penyepaduan, interpolasi, fungsi khas, FFT, isyarat dan pemprosesan imej, penyelesai ODE dan banyak lagi. Pustaka SciPy dibina untuk bekerja dengan tatasusunan NumPy dan menyediakan banyak rutin berangka yang mesra pengguna dan cekap, seperti untuk penyepaduan dan pengoptimuman berangka. Di samping itu, SciPy menyediakan sejumlah besar fungsi saintifik lanjutan, seperti ujian statistik, pencarian akar, algebra linear, transformasi Fourier, dsb. SciPy ialah projek sumber terbuka yang aktif dengan pasukan pembangunan antarabangsa. Ia dikeluarkan di bawah lesen BSD dan percuma untuk digunakan.
Berikut ialah beberapa contoh projek sains data Python yang boleh anda cuba:
1 untuk meramalkan pasaran saham. Ini adalah projek yang bagus untuk pemula kerana ia tidak memerlukan banyak data.
2. Menganalisis Set Data E-mel Enron: Set Data E-mel Enron ialah set data yang hebat untuk projek sains data. Anda boleh menggunakan Python untuk menganalisis e-mel dan mencari cerapan menarik.
3. Kelaskan imej menggunakan rangkaian saraf konvolusi: Anda boleh menggunakan rangkaian saraf konvolusi untuk mengelaskan imej. Ini adalah projek yang hebat untuk sesiapa sahaja yang berminat dalam pembelajaran mesin.
4. Menganalisis Set Data Ulasan Yelp: Set Data Ulasan Yelp ialah set data yang hebat untuk projek sains data. Anda boleh menggunakan Python untuk menganalisis ulasan dan mencari cerapan menarik.
5. Ramalkan harga rumah.
Sebagai ejen hartanah, salah satu kemahiran yang paling penting ialah meramal harga rumah. Ini mungkin sukar kerana banyak faktor yang mempengaruhi penetapan harga rumah. Walau bagaimanapun, dengan data yang betul dan sedikit pengaturcaraan Python, adalah mungkin untuk mencipta model yang boleh meramalkan harga rumah dengan tepat. Langkah pertama ialah mengumpul data tentang jualan rumah baru-baru ini di kawasan anda. Data ini hendaklah termasuk harga jualan, rakaman persegi, bilangan bilik tidur dan bilik mandi serta sebarang maklumat lain yang berkaitan. Anda boleh mencari data ini dalam talian atau mengumpulnya sendiri daripada rekod awam. Sebaik sahaja anda mempunyai data ini, anda perlu membersihkannya dan menyediakannya untuk digunakan dalam model pembelajaran mesin. Ini termasuk mengalih keluar sebarang nilai yang hilang dan memastikan semua data berada dalam format yang betul. Seterusnya,
Python bukan sahaja salah satu bahasa pengaturcaraan yang paling popular, tetapi juga salah satu bahasa yang paling berbaloi untuk dilawati. Walaupun banyak bahasa menggunakan tanda baca dan kata kunci yang kelihatan seperti omong kosong pada mata yang tidak terlatih, sintaks Python adalah bersih dan elegan. Malah pemula boleh belajar membaca dan menulis kod Python dengan cepat.
Bukan sintaks sahaja yang menjadikan Python cantik. Bahasa ini juga mempunyai falsafah yang dipanggil Python Zen, yang menggalakkan pembangun menulis kod yang mudah, boleh dibaca dan boleh diselenggara. Falsafah ini membantu menjadikan Python sebagai salah satu bahasa yang paling popular untuk pemula dan pembangun berpengalaman.
Atas ialah kandungan terperinci Cara menggunakan Python untuk sains data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!