Jadual Kandungan
Model Pokok VS Rangkaian Neural
Pemilihan 1 dan 0 dalam model pokok VS Pemilihan kemungkinan rangkaian neural
Kesimpulan
Rumah Peranti teknologi AI Pembelajaran Mesin: Jangan memandang rendah kuasa model pokok

Pembelajaran Mesin: Jangan memandang rendah kuasa model pokok

Apr 18, 2023 pm 07:10 PM
pembelajaran mesin rangkaian saraf model pokok

Disebabkan kerumitannya, rangkaian saraf sering dianggap sebagai "holy grail" untuk menyelesaikan semua masalah pembelajaran mesin. Kaedah berasaskan pokok, sebaliknya, tidak mendapat perhatian yang sama, terutamanya disebabkan oleh kesederhanaan yang jelas bagi algoritma tersebut. Walau bagaimanapun, kedua-dua algoritma ini mungkin kelihatan berbeza, tetapi ia seperti dua sisi syiling yang sama, kedua-duanya adalah penting.

Pembelajaran Mesin: Jangan memandang rendah kuasa model pokok

Model Pokok VS Rangkaian Neural

Kaedah berasaskan pokok biasanya lebih baik daripada rangkaian saraf. Pada asasnya, kaedah berasaskan pokok dan kaedah berasaskan rangkaian saraf diletakkan dalam kategori yang sama kerana kedua-duanya mendekati masalah melalui penyahbinaan langkah demi langkah, dan bukannya memisahkan keseluruhan set data melalui sempadan kompleks seperti mesin vektor sokongan atau regresi logistik. .

Jelas sekali, kaedah berasaskan pokok secara beransur-ansur membahagikan ruang ciri di sepanjang ciri yang berbeza untuk mengoptimumkan perolehan maklumat. Apa yang kurang jelas ialah rangkaian saraf juga mendekati tugas dengan cara yang sama. Setiap neuron memantau bahagian tertentu ruang ciri (dengan pelbagai pertindihan). Apabila input memasuki ruang ini, neuron tertentu diaktifkan. ​

Rangkaian saraf melihat model sekeping demi sekeping ini sesuai dari perspektif kebarangkalian, manakala kaedah berasaskan pokok mengambil perspektif deterministik. Walau apa pun, prestasi kedua-duanya bergantung pada kedalaman model, kerana komponennya dikaitkan dengan pelbagai bahagian ruang ciri.

Model dengan terlalu banyak komponen (nod untuk model pokok, neuron untuk rangkaian saraf) akan terlampau muat, manakala model dengan terlalu sedikit komponen tidak akan memberikan ramalan Bermakna. (Kedua-duanya bermula dengan menghafal titik data, dan bukannya belajar untuk membuat generalisasi.)

Untuk memahami dengan lebih intuitif bagaimana rangkaian saraf membahagikan ruang ciri, anda boleh membaca artikel pengenalan ini mengenai Penghampiran Universal Teorem: https://medium.com/analytics-vidhya/you-dont-understand-neural-networks-until-you-understand-the-universal-approximation-theory-85b3e7677126.

Walaupun terdapat banyak varian berkuasa pepohon keputusan seperti Random Forest, Gradient Boosting, AdaBoost dan Deep Forest, secara amnya, kaedah berasaskan pokok pada asasnya adalah penyederhanaan versi rangkaian saraf.

Kaedah berasaskan pokok menyelesaikan masalah sekeping demi sekeping melalui garisan menegak dan mendatar untuk meminimumkan entropi (pengoptimum dan kerugian). Rangkaian saraf menggunakan fungsi pengaktifan untuk menyelesaikan masalah sekeping demi sekeping.

Kaedah berasaskan pokok adalah bersifat deterministik dan bukannya probabilistik. Ini membawa beberapa pemudahan yang bagus seperti pemilihan ciri automatik.

Nod keadaan yang diaktifkan dalam pepohon keputusan adalah serupa dengan neuron yang diaktifkan (aliran maklumat) dalam rangkaian saraf.

Rangkaian saraf mengubah input melalui parameter pemasangan dan secara tidak langsung membimbing pengaktifan neuron seterusnya. Pokok keputusan secara eksplisit sesuai dengan parameter untuk membimbing aliran maklumat. (Ini adalah hasil daripada deterministik lawan probabilistik.)

Pembelajaran Mesin: Jangan memandang rendah kuasa model pokok

Aliran maklumat adalah serupa dalam kedua-dua model, hanya dalam model pokok Aliran kaedah lebih mudah.

Pemilihan 1 dan 0 dalam model pokok VS Pemilihan kemungkinan rangkaian neural

Sudah tentu, ini adalah kesimpulan abstrak, dan mungkin terdapat malah menjadi Kontroversial. Memang, terdapat banyak halangan untuk membuat hubungan ini. Walau apa pun, ini adalah bahagian penting dalam memahami bila dan mengapa kaedah berasaskan pokok lebih baik daripada rangkaian saraf.

Adalah lumrah bagi pepohon keputusan untuk berfungsi dengan data berstruktur dalam bentuk jadual atau jadual. Kebanyakan orang bersetuju bahawa menggunakan rangkaian saraf untuk melakukan regresi dan ramalan pada data jadual adalah berlebihan, jadi beberapa pemudahan dibuat di sini. Pilihan 1s dan 0s, bukannya kebarangkalian, adalah sumber utama perbezaan antara kedua-dua algoritma. Oleh itu, kaedah berasaskan pokok boleh berjaya digunakan pada situasi di mana kebarangkalian tidak diperlukan, seperti data berstruktur.

Sebagai contoh, kaedah berasaskan pokok menunjukkan prestasi yang baik pada set data MNIST kerana setiap nombor mempunyai beberapa ciri penting. Tidak perlu mengira kebarangkalian dan masalahnya tidak begitu rumit, itulah sebabnya model ensembel pokok yang direka dengan baik boleh berprestasi sebaik atau lebih baik daripada rangkaian saraf konvolusi moden.

Secara amnya, orang ramai cenderung untuk mengatakan bahawa "kaedah berasaskan pokok hanya ingat peraturan", yang betul. Rangkaian saraf adalah sama, kecuali mereka boleh mengingati peraturan berasaskan kebarangkalian yang lebih kompleks. Daripada memberikan ramalan benar/salah secara eksplisit untuk keadaan seperti x>3, rangkaian saraf menguatkan input kepada nilai yang sangat tinggi, menghasilkan nilai sigmoid 1 atau menjana ungkapan berterusan.

Sebaliknya, memandangkan rangkaian saraf sangat kompleks, terdapat banyak perkara yang boleh dilakukan dengannya. Kedua-dua lapisan konvolusi dan berulang adalah varian rangkaian saraf yang luar biasa kerana data yang diproses selalunya memerlukan nuansa pengiraan kebarangkalian.

Terdapat sangat sedikit imej yang boleh dimodelkan dengan satu dan sifar. Nilai pepohon keputusan tidak dapat mengendalikan set data dengan banyak nilai perantaraan (mis. 0.5) sebab itu ia berfungsi dengan baik pada set data MNIST di mana nilai piksel hampir semuanya hitam atau putih tetapi piksel set data lain Nilainya bukan (cth. ImageNet) . Begitu juga, teks mempunyai terlalu banyak maklumat dan terlalu banyak anomali untuk dinyatakan dalam istilah yang pasti.

Ini juga merupakan sebab mengapa rangkaian saraf digunakan terutamanya dalam bidang ini, dan juga sebab mengapa penyelidikan rangkaian saraf terbantut pada hari-hari awal (sebelum permulaan abad ke-21) apabila sejumlah besar data imej dan teks tidak tersedia . Penggunaan biasa rangkaian neural yang lain adalah terhad kepada ramalan berskala besar, seperti algoritma pengesyoran video YouTube, yang sangat besar dan mesti menggunakan kebarangkalian.

Pasukan sains data di mana-mana syarikat mungkin akan menggunakan model berasaskan pokok dan bukannya rangkaian saraf, melainkan mereka membina aplikasi tugas berat seperti mengaburkan latar belakang video Zoom. Tetapi dalam tugas klasifikasi perniagaan harian, kaedah berasaskan pokok menjadikan tugasan ini ringan kerana sifat deterministiknya, dan kaedahnya adalah sama seperti rangkaian saraf.

Dalam banyak situasi praktikal, pemodelan deterministik adalah lebih semula jadi daripada pemodelan probabilistik. Contohnya, untuk meramalkan sama ada pengguna akan membeli item daripada tapak web e-dagang, model pokok ialah pilihan yang baik kerana pengguna secara semula jadi mengikuti proses membuat keputusan berasaskan peraturan. Proses membuat keputusan pengguna mungkin kelihatan seperti ini:

  1. Adakah saya mempunyai pengalaman membeli-belah yang positif pada platform ini sebelum ini? Jika ya, teruskan.
  2. Adakah saya memerlukan item ini sekarang? (Sebagai contoh, patutkah saya membeli cermin mata hitam dan seluar renang untuk musim sejuk?) Jika ya, teruskan.
  3. Berdasarkan demografi pengguna saya, adakah ini produk yang saya akan berminat untuk membeli? Jika ya, teruskan.
  4. Adakah perkara ini terlalu mahal? Jika tidak, teruskan.
  5. Adakah pelanggan lain menilai produk ini cukup tinggi untuk saya berasa selesa membelinya? Jika ya, teruskan.

Secara umumnya, manusia mengikut proses membuat keputusan berasaskan peraturan dan tersusun. Dalam kes ini, pemodelan kebarangkalian tidak diperlukan.

Kesimpulan

  • Adalah yang terbaik untuk memikirkan kaedah berasaskan pokok sebagai versi rangkaian neural yang diperkecilkan untuk menampilkan ciri dalam cara yang lebih mudah Pengelasan, pengoptimuman, pemindahan aliran maklumat, dsb.
  • Perbezaan utama dalam penggunaan antara kaedah berasaskan pokok dan kaedah rangkaian saraf ialah struktur data deterministik (0/1) dan kemungkinan. Data berstruktur (jadual) boleh dimodelkan dengan lebih baik menggunakan model deterministik.
  • Jangan memandang rendah kuasa kaedah pokok.​

Atas ialah kandungan terperinci Pembelajaran Mesin: Jangan memandang rendah kuasa model pokok. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Jun 01, 2024 am 10:58 AM

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Apr 29, 2024 pm 06:50 PM

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Apr 12, 2024 pm 05:55 PM

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Apr 29, 2024 pm 03:25 PM

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks Jun 03, 2024 pm 10:08 PM

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud May 30, 2024 pm 01:24 PM

MetaFAIR bekerjasama dengan Harvard untuk menyediakan rangka kerja penyelidikan baharu untuk mengoptimumkan bias data yang dijana apabila pembelajaran mesin berskala besar dilakukan. Adalah diketahui bahawa latihan model bahasa besar sering mengambil masa berbulan-bulan dan menggunakan ratusan atau bahkan ribuan GPU. Mengambil model LLaMA270B sebagai contoh, latihannya memerlukan sejumlah 1,720,320 jam GPU. Melatih model besar memberikan cabaran sistemik yang unik disebabkan oleh skala dan kerumitan beban kerja ini. Baru-baru ini, banyak institusi telah melaporkan ketidakstabilan dalam proses latihan apabila melatih model AI generatif SOTA Mereka biasanya muncul dalam bentuk lonjakan kerugian Contohnya, model PaLM Google mengalami sehingga 20 lonjakan kerugian semasa proses latihan. Bias berangka adalah punca ketidaktepatan latihan ini,

See all articles