Mempraktikkan Penggunaan AI Bertanggungjawab: Empat Prinsip
Kecerdasan Buatan (AI) sedang mengubah setiap industri, dengan lebih daripada satu pertiga organisasi kini menghasilkan AI secara meluas atau secara terhad. Tetapi seperti mana-mana teknologi, AI datang dengan risiko ekonomi dan sosial yang ketara, seperti penyebaran berat sebelah tidak beretika, pencairan akauntabiliti dan pelanggaran privasi data.
Untuk mengelakkan risiko ini dan menggunakan AI secara bertanggungjawab, kedua-dua dasar kawal selia dan industri mempunyai tanggungjawab untuk membangunkan proses dan piawaian untuk pengamal dan pengguna yang bekerja di sekitar teknologi. Untuk tujuan itu, pasukan di Ethical AI dan ML Institute telah menyusun Prinsip AI Bertanggungjawab untuk memperkasakan pengamal untuk memastikan prinsip ini dibenamkan melalui reka bentuk ke dalam infrastruktur dan proses yang mengelilingi pengeluaran AI dan sistem pembelajaran mesin.
Artikel ini memecahkan empat daripada lapan prinsip: penilaian berat sebelah, kebolehjelasan, peningkatan buatan dan kebolehulangan.
Penilaian Bias
Model AI sememangnya berat sebelah dalam erti kata ia direka bentuk untuk menangani jawapan yang berkaitan secara berbeza. Itu kerana kecerdasan, pada terasnya, adalah keupayaan untuk mengenali dan bertindak mengikut corak yang kita lihat di dunia. Apabila membangunkan model AI, kami cuba meniru keupayaan tepat ini dan menggalakkan AI untuk menemui corak dalam data yang dimasukkan ke dalamnya dan membangunkan berat sebelah dengan sewajarnya. Sebagai contoh, model yang mengkaji data kimia protein akan mempunyai kecenderungan yang wujud terhadap protein yang strukturnya boleh dilipat dengan cara tertentu, dengan itu menemui protein mana yang berguna dalam kes penggunaan yang berkaitan dalam perubatan.
Oleh itu, kita harus berhati-hati apabila bersuara menentang kecenderungan AI. Apabila bercakap tentang topik berat sebelah dalam AI, kami biasanya merujuk kepada berat sebelah yang sebenarnya tidak diingini atau tidak munasabah, seperti berat sebelah berdasarkan ciri yang dilindungi seperti bangsa, jantina atau asal negara.
Tetapi mengapa model AI menghasilkan berat sebelah yang tidak beretika? Jawapannya bergantung pada data yang dimasukkan ke dalamnya. Model akhirnya akan mencerminkan bias yang terdapat dalam data latihan yang digunakan sebelum penggunaan, jadi jika data latihan tidak mewakili atau menggabungkan bias yang sedia ada, model yang terhasil akhirnya akan mencerminkannya. Seperti yang mereka katakan dalam sains komputer, "sampah masuk, sampah keluar."
Pasukan juga mesti mencipta satu set proses dan prosedur untuk mengenal pasti dengan betul sebarang berat sebelah yang tidak diingini di sekitar keberkesanan data latihan AI, latihan dan penilaian model itu sendiri, dan kitaran hayat operasi model itu sendiri . Jika anda menggunakan AI, contoh yang baik untuk dilihat ialah AI Etika dan rangka kerja AI Boleh Diterangkan Institut Pembelajaran Mesin, yang akan kami bincangkan dengan lebih terperinci seterusnya.
Kebolehtafsiran
Untuk memastikan model AI sesuai untuk tujuan, penyertaan pakar dalam bidang yang berkaitan juga penting. Orang ini boleh membantu pasukan memastikan model AI menggunakan metrik prestasi yang betul, bukan hanya statistik dan metrik prestasi terdorong ketepatan. Perlu ditekankan bahawa pakar domain termasuk bukan sahaja pakar teknikal, tetapi juga pakar dalam sains sosial dan kemanusiaan yang berkaitan dengan kes penggunaan.
Walau bagaimanapun, agar ia berguna, adalah penting juga untuk memastikan ramalan model boleh ditafsirkan oleh pakar domain yang berkaitan. Walau bagaimanapun, model AI lanjutan sering menggunakan teknik pembelajaran mendalam yang terkini, yang mungkin tidak hanya menjelaskan sebab ramalan tertentu dibuat.
Untuk mengatasi kesukaran ini, organisasi cenderung untuk mencapai kebolehtafsiran pembelajaran mesin dengan memanfaatkan pelbagai teknik dan alatan yang boleh digunakan untuk menguraikan ramalan model AI.
Selepas kebolehtafsiran datang pengoperasian model kecerdasan buatan. Inilah masanya untuk penyiasatan dan pemantauan oleh pihak berkepentingan yang berkaitan. Kitaran hayat model AI sedemikian hanya bermula selepas ia digunakan dengan betul untuk pengeluaran. Setelah siap dan berjalan, model hanya mengalami kemerosotan prestasi disebabkan oleh tekanan luaran, sama ada hanyutan konsep atau perubahan dalam persekitaran di mana model dijalankan.
Pembesaran Manusia
Apabila menggunakan AI, adalah penting untuk menilai dahulu keperluan semasa proses asal bukan automatik, termasuk menggariskan risiko hasil yang tidak diingini. Ini akan membolehkan pemahaman yang lebih mendalam tentang proses dan membantu mengenal pasti kawasan yang mungkin memerlukan campur tangan manusia untuk mengurangkan risiko.
Sebagai contoh, AI yang mengesyorkan pelan makan kepada atlet profesional mempunyai faktor risiko berimpak tinggi yang jauh lebih sedikit berbanding model AI yang mengautomasikan proses kelulusan pinjaman bahagian belakang untuk bank, yang menunjukkan keperluan untuk campur tangan manusia dalam yang pertama lebih kecil daripada yang kedua. Apabila pasukan mengenal pasti titik risiko yang berpotensi dalam aliran kerja AI, mereka boleh mempertimbangkan untuk melaksanakan proses semakan Gelung Manusia-Mesin (HITL).
HITL memastikan bahawa selepas proses diautomasikan, masih terdapat pelbagai titik sentuh di mana campur tangan manusia diperlukan untuk menyemak keputusan, menjadikannya lebih mudah untuk memberikan pembetulan atau membalikkan keputusan apabila perlu. Proses ini boleh termasuk sekumpulan pakar teknikal dan pakar industri (contohnya, penaja jamin untuk pinjaman bank, atau pakar pemakanan untuk perancangan makanan) untuk menilai keputusan yang dibuat oleh model AI dan memastikan bahawa mereka mematuhi amalan terbaik.
Kebolehulangan
Kebolehulangan ialah keupayaan pasukan untuk menjalankan algoritma berulang kali pada titik data dan mendapat hasil yang sama setiap kali. Ini adalah komponen teras AI yang bertanggungjawab, kerana ia penting untuk memastikan ramalan model sebelumnya diterbitkan semula apabila ditayangkan semula pada peringkat seterusnya.
Sememangnya, kebolehulangan sukar dicapai, terutamanya disebabkan oleh kesukaran yang wujud dalam sistem kecerdasan buatan. Ini kerana output model AI boleh berbeza-beza bergantung pada pelbagai situasi latar belakang, seperti:
- Kod yang digunakan untuk mengira gangguan AI
- Berat yang dipelajari daripada data yang digunakan
- Persekitaran, infrastruktur dan konfigurasi untuk menjalankan kod
- Input dan struktur input yang disediakan kepada model
Ini adalah isu yang rumit, terutamanya apabila model AI Apabila digunakan pada skala dan banyak alat dan rangka kerja lain perlu dipertimbangkan. Untuk melakukan ini, pasukan perlu membangunkan amalan yang mantap untuk membantu mengawal situasi di atas dan melaksanakan alat untuk membantu meningkatkan kebolehulangan.
Pengambilan Utama
Dengan prinsip peringkat tinggi di atas, industri boleh memastikan mereka mengikuti amalan terbaik untuk penggunaan AI yang bertanggungjawab. Mengguna pakai prinsip sedemikian adalah penting untuk memastikan AI mencapai potensi ekonomi sepenuhnya dan tidak melemahkan kumpulan yang terdedah, mengukuhkan berat sebelah tidak beretika, atau menjejaskan akauntabiliti. Sebaliknya, ia boleh menjadi teknologi yang boleh kita gunakan untuk memacu pertumbuhan, produktiviti, kecekapan, inovasi dan kebaikan yang lebih besar untuk semua.
Atas ialah kandungan terperinci Mempraktikkan Penggunaan AI Bertanggungjawab: Empat Prinsip. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas
