Rumah > Peranti teknologi > AI > Latihan tersuai bagi model pembelajaran mendalam menggunakan teknik pembelajaran pemindahan

Latihan tersuai bagi model pembelajaran mendalam menggunakan teknik pembelajaran pemindahan

PHPz
Lepaskan: 2023-04-23 08:13:06
ke hadapan
1700 orang telah melayarinya

​Penterjemah |. Zhu Xianzhong

Penilai|. kaedah rangkaian saraf terlatih, dan rangkaian saraf pra-terlatih ini dilatih menggunakan berjuta-juta titik data.

Penggunaan teknologi ini yang paling terkenal ialah untuk melatih rangkaian saraf dalam, kerana kaedah ini menunjukkan prestasi yang baik apabila menggunakan kurang data untuk melatih rangkaian saraf dalam . Malah, teknik ini juga berguna dalam bidang sains data, kerana kebanyakan data dunia sebenar biasanya tidak mempunyai berjuta-juta titik data untuk melatih model pembelajaran mendalam yang mantap.

Latihan tersuai bagi model pembelajaran mendalam menggunakan teknik pembelajaran pemindahanPada masa ini, banyak model wujud yang dilatih menggunakan berjuta-juta titik data, dan model ini boleh digunakan untuk melatih rangkaian saraf pembelajaran mendalam yang kompleks dengan ketepatan maksimum.

Dalam tutorial ini, anda akan mempelajari proses lengkap cara menggunakan teknologi pembelajaran pemindahan untuk melatih rangkaian saraf dalam.

Melaksanakan pembelajaran pemindahan menggunakan program Keras

Sebelum membina atau melatih rangkaian saraf dalam, anda mesti memahami pilihan yang tersedia untuk pembelajaran pemindahan dan yang mana satu mesti digunakan Penyelesaian untuk melatih rangkaian saraf dalam yang kompleks untuk projek. Aplikasi Keras ialah model pembelajaran mendalam lanjutan yang menyediakan pemberat pra-latihan yang boleh digunakan untuk ramalan, pengekstrakan ciri dan penalaan halus. Terdapat banyak model sedia untuk digunakan terbina dalam perpustakaan Keras, beberapa model popular termasuk:

Xception

VGG16 dan VGG19
  • Siri ResNet
  • MobileNet
  • 【Supplement】Aplikasi Keras menyediakan satu set model pembelajaran mendalam yang boleh digunakan dengan pemberat yang telah dilatih. Untuk kandungan yang lebih khusus tentang model ini, sila rujuk ​
  • ​kandungan laman web rasmi Keras ​
  • ​.

Dalam artikel ini, anda akan mempelajari aplikasi ​​model MobileNet ​​ dalam pembelajaran pemindahan.

Latih model pembelajaran mendalam

Dalam bahagian ini, anda akan belajar cara membina model pembelajaran mendalam tersuai untuk pengecaman imej dalam beberapa langkah sahaja, bukannya menulis mana-mana siri rangkaian neural convolutional (CNN), anda hanya boleh memperhalusi model pra-latihan untuk melatih model anda pada set data latihan. Dalam artikel ini, kami membina model pembelajaran mendalam yang akan dapat mengecam imej digit bahasa isyarat. Seterusnya, mari mula membina model pembelajaran mendalam tersuai ini.

Dapatkan set data

Untuk memulakan proses membina model pembelajaran mendalam, anda perlu terlebih dahulu menyediakan data Anda boleh melakukannya dengan melawati tapak web yang dipanggil Kaggle, daripada Pilih set data yang betul dengan mudah antara jutaan set data. Sudah tentu, terdapat banyak tapak web lain yang menyediakan set data yang tersedia untuk membina model pembelajaran mendalam atau pembelajaran mesin. Tetapi set data yang akan digunakan oleh artikel ini diambil daripada ​

​Set Data Digit Bahasa Isyarat Amerika​

​ yang disediakan oleh tapak web Kaggle.

Prapemprosesan Data

Selepas memuat turun set data dan menyimpannya ke storan setempat, kini tiba masanya untuk melaksanakan beberapa prapemprosesan pada set data Seperti menyediakan data, membahagikan data ke dalam direktori kereta api, direktori yang sah dan direktori ujian, menentukan laluan mereka dan mencipta pemprosesan kelompok untuk tujuan latihan, dsb.

Sediakan data

Apabila anda memuat turun set data, ia mengandungi direktori data dari 0 hingga 9, dengan tiga subfolder sepadan dengan imej input, imej output dan nama. Folder untuk CSV. Seterusnya, padam imej output dan folder CSV daripada setiap direktori, alihkan kandungan folder imej input ke direktori utama, dan kemudian padam folder imej input.

Setiap direktori induk set data kini memegang 500 imej dan anda boleh memilih untuk menyimpan kesemuanya. Tetapi untuk tujuan demonstrasi, hanya 200 imej daripada setiap direktori digunakan dalam artikel ini.

Akhir sekali, struktur set data akan seperti yang ditunjukkan di bawah:

Latihan tersuai bagi model pembelajaran mendalam menggunakan teknik pembelajaran pemindahan

Struktur folder set data

Pisah set data

Sekarang, mari mulakan dengan Mula dengan membahagikan set data kepada tiga subdirektori: train, valid dan test. Direktori kereta api

  • akan mengandungi data latihan yang akan berfungsi sebagai data input kepada model kami untuk corak pembelajaran dan penyelewengan.
  • Direktori yang sah akan mengandungi data pengesahan yang akan dimasukkan ke dalam model dan akan menjadi data ghaib pertama yang dilihat oleh model, yang akan membantu mencapai ketepatan maksimum.
  • Direktori ujian akan mengandungi data ujian yang digunakan untuk menguji model.

Mula-mula, mari kita import perpustakaan yang akan digunakan selanjutnya dalam kod.

# 导入需要的库
import os
import shutil
import random
Salin selepas log masuk

Di bawah ialah kod untuk menjana direktori yang diperlukan dan mengalihkan data ke direktori tertentu.

#创建三个子目录:train、valid和test,并把数据组织到其下
os.chdir('D:SACHINJupyterHand Sign LanguageHand_Sign_Language_DL_ProjectAmerican-Sign-Language-Digits-Dataset')

#如果目录不存在则创建相应的子目录
if os.path.isdir('train/0/') is False:
os.mkdir('train')
os.mkdir('valid')
os.mkdir('test')

for i in range(0, 10):
#把0-9子目录移动到train子目录下
shutil.move(f'{i}', 'train')
os.mkdir(f'valid/{i}')
os.mkdir(f'test/{i}')

#从valid子目录下取90个样本图像
valid_samples = random.sample(os.listdir(f'train/{i}'), 90)
for j in valid_samples:
#把样本图像从子目录train移动到valid子目录
shutil.move(f'train/{i}/{j}', f'valid/{i}')

#从test子目录下取90个样本图像
test_samples = random.sample(os.listdir(f'train/{i}'), 10)
for k in test_samples:
#把样本图像从子目录train移动到test子目录
shutil.move(f'train/{i}/{k}', f'test/{i}')

os.chdir('../..')
Salin selepas log masuk

Dalam kod di atas, kami mula-mula menukar direktori yang sepadan dengan set data dalam storan setempat, dan kemudian menyemak sama ada direktori train/0 sudah wujud, jika tidak, kami akan mencipta train, valid dan subdirektori ujian.

Kemudian, kami mencipta subdirektori 0 hingga 9, memindahkan semua data ke direktori kereta api dan mencipta subdirektori 0 hingga 9 di bawah subdirektori yang sah dan menguji.

Kami kemudiannya mengulangi subdirektori 0 hingga 9 dalam direktori kereta api dan secara rawak mendapatkan 90 data imej daripada setiap subdirektori dan mengalihkannya ke subdirektori yang sepadan dalam direktori yang sah.

Perkara yang sama berlaku untuk ujian direktori ujian.

【Tambahan】 modul shutil untuk melaksanakan operasi fail lanjutan dalam Python (menyalin atau memindahkan fail atau folder secara manual dari satu direktori ke direktori lain boleh menjadi perkara yang sangat menyakitkan. Untuk petua terperinci, sila Rujukan artikel https://medium .com/@geekpython/perform-high-level-file-operations-in-python-shutil-module-dfd71b149d32).

Tentukan laluan ke setiap direktori

Selepas mencipta direktori yang diperlukan, anda kini perlu mentakrifkan tiga subdirektori iaitu train, valid dan test laluan.

#为三个子目录train、valid和test分别指定路径
train_path = 'D:/SACHIN/Jupyter/Hand Sign Language/Hand_Sign_Language_DL_Project/American-Sign-Language-Digits-Dataset/train'
valid_path = 'D:/SACHIN/Jupyter/Hand Sign Language/Hand_Sign_Language_DL_Project/American-Sign-Language-Digits-Dataset/valid'
test_path = 'D:/SACHIN/Jupyter/Hand Sign Language/Hand_Sign_Language_DL_Project/American-Sign-Language-Digits-Dataset/test'
Salin selepas log masuk

Pra-pemprosesan

Model pembelajaran mendalam pra-latihan memerlukan beberapa data pra-diproses, yang sangat sesuai untuk latihan. Oleh itu, data perlu dalam format yang diperlukan oleh model pralatihan.

Sebelum menggunakan sebarang prapemprosesan, marilah kami mengimport TensorFlow dan utilitinya, yang akan digunakan selanjutnya dalam kod.

#导入TensorFlow及其实用程序
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import categorical_crossentropy
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Model
from tensorflow.keras.models import load_model
Salin selepas log masuk

#创建训练、校验和测试图像的批次,并使用Mobilenet的预处理模型进行预处理
train_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory(
directory=train_path, target_size=(224,224), batch_size=10, shuffle=True)
valid_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory(
directory=valid_path, target_size=(224,224), batch_size=10, shuffle=True)
test_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory(
directory=test_path, target_size=(224,224), batch_size=10, shuffle=False)
Salin selepas log masuk

Kami menggunakan ImageDatagenerator, yang mengambil parameter preprocessing_function, di mana kami mempraproses imej yang disediakan oleh model MobileNet.

Seterusnya, panggil fungsi flow_from_directory di mana kami menyediakan laluan ke direktori dan dimensi imej untuk dilatih, memandangkan model MobileNet dilatih untuk imej dengan dimensi 224x224.

Seterusnya, kami mentakrifkan saiz kelompok - berapa banyak imej yang boleh diproses dalam satu lelaran, dan kemudian kami merombak susunan pemprosesan imej secara rawak. Di sini, kami tidak mengocok imej secara rawak untuk data ujian kerana data ujian tidak akan digunakan untuk latihan.

Selepas menjalankan coretan kod di atas dalam buku nota Jupyter atau Google Colab, anda akan melihat hasil berikut.

Latihan tersuai bagi model pembelajaran mendalam menggunakan teknik pembelajaran pemindahan

Output kod di atas

Senario aplikasi umum ImageDataGenerator adalah untuk menambah data. Berikut ialah panduan untuk melakukan penambahan data menggunakan ImageDataGenerator dalam rangka kerja Keras.

Cipta model

Sebelum memasukkan data latihan dan pengesahan ke dalam model, model pembelajaran mendalam MobileNet perlu dibuat dengan menambah lapisan output, mengalih keluar lapisan yang tidak diperlukan, dan menggunakan Sesetengah lapisan tidak boleh dilatih, membenarkan ketepatan yang lebih baik untuk penalaan halus.

Kod berikut akan memuat turun model MobileNet daripada Keras dan menyimpannya dalam pembolehubah mudah alih. Anda perlu disambungkan ke Internet pada kali pertama anda menjalankan coretan kod berikut.

mobile = tf.keras.applications.mobilenet.MobileNet()
Salin selepas log masuk

如果您运行以下代码,那么您将看到模型的摘要信息,在其中你可以看到一系列神经网络层的输出信息。

mobile.summary()
Salin selepas log masuk

现在,我们将在模型中添加以10为单位的全连接输出层(也称“稠密层”)——因为从0到9将有10个输出。此外,我们从MobileNet模型中删除了最后六个层。

# 删除最后6层并添加一个输出层
x = mobile.layers[-6].output
output = Dense(units=10, activation='softmax')(x)
Salin selepas log masuk

然后,我们将所有输入和输出层添加到模型中。

model = Model(inputs=mobile.input, outputs=output)
Salin selepas log masuk

现在,我们将最后23层设置成不可训练的——其实这是一个相对随意的数字。一般来说,这一具体数字是通过多次试验和错误获得的。该代码的唯一目的是通过使某些层不可训练来提高精度。

#我们不会训练最后23层——这里的23是一个相对随意的数字
for layer in mobile.layers[:-23]:
layer.trainable=False
Salin selepas log masuk

如果您看到了微调模型的摘要输出,那么您将注意到与前面看到的原始摘要相比,不可训练参数和层的数量存在一些差异。

model.summary()
Salin selepas log masuk

接下来,我们要编译名为Adam的优化器,选择学习率为0.0001,以及损失函数,还有衡量模型的准确性的度量参数。

model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
Salin selepas log masuk

现在是准备好模型并根据训练和验证数据来开始训练的时候了。在下面的代码中,我们提供了训练和验证数据以及训练的总体轮回数。详细信息只是为了显示准确性进度,在这里您可以指定一个数字参数值为0、1或者2。

# 运行共10个轮回(epochs)
model.fit(x=train_batches, validation_data=valid_batches, epochs=10, verbose=2)
Salin selepas log masuk

如果您运行上面的代码片断,那么您将看到训练数据丢失和准确性的轮回的每一步的输出内容。对于验证数据,您也能够看到这样的输出结果。

Latihan tersuai bagi model pembelajaran mendalam menggunakan teknik pembelajaran pemindahan

显示有精度值的训练轮回步数

存储模型

该模型现在已准备就绪,准确度得分为99%。现在请记住一件事:这个模型可能存在过度拟合,因此有可能对于给定数据集图像以外的图像表现不佳。

#检查模型是否存在;否则,保存模型
if os.path.isfile("D:/SACHIN/Models/Hand-Sign-Digit-Language/digit_model.h5") is False:
model.save("D:/SACHIN/Models/Hand-Sign-Digit-Language/digit_model.h5")
Salin selepas log masuk

上面的代码将检查是否已经有模型的副本。如果没有,则通过调用save函数在指定的路径中保存模型。

测试模型

至此,模型已经经过训练,可以用于识别图像了。本节将介绍加载模型和编写准备图像、预测结果以及显示和打印预测结果的函数。

在编写任何代码之前,需要导入一些将在代码中进一步使用的必要的库。

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
Salin selepas log masuk

加载定制的模型

对图像的预测将使用上面使用迁移学习技术创建的模型进行。因此,我们首先需要加载该模型,以供后面使用。

my_model = load_model("D:/SACHIN/Models/Hand-Sign-Digit-Language/digit_model.h5")
Salin selepas log masuk

在此,我们通过使用load_model函数,实现从指定路径加载模型,并将其存储在my_model变量中,以便在后面代码中进一步使用。

准备输入图像

在向模型提供任何用于预测或识别的图像之前,我们需要提供模型所需的格式。

def preprocess_img(img_path):
open_img = image.load_img(img_path, target_size=(224, 224))
img_arr = image.img_to_array(open_img)/255.0
img_reshape = img_arr.reshape(1, 224,224,3)
return img_reshape
Salin selepas log masuk

首先,我们要定义一个获取图像路径的函数preprocess_img,然后使用image实用程序中的load_img函数加载该图像,并将目标大小设置为224x224。然后将该图像转换成一个数组,并将该数组除以255.0,这样就将图像的像素值转换为0和1,然后将图像数组重新调整为形状(224,224,3),最后返回转换形状后的图像。

编写预测函数

def predict_result(predict):
pred = my_model.predict(predict)
return np.argmax(pred[0], axis=-1)
Salin selepas log masuk

这里,我们定义了一个函数predict_result,它接受predict参数,此参数基本上是一个预处理的图像。然后,我们调用模型的predict函数来预测结果。最后,从预测结果中返回最大值。

显示与预测图像

首先,我们将创建一个函数,它负责获取图像的路径,然后显示图像和预测结果。

#显示和预测图像的函数
def display_and_predict(img_path_input):
display_img = Image.open(img_path_input)
plt.imshow(display_img)
plt.show()
img = preprocess_img(img_path_input)
pred = predict_result(img)
print("Prediction: ", pred)
Salin selepas log masuk

上面这个函数display_and_predict首先获取图像的路径并使用PIL库中的Image.open函数打开该图像,然后使用matplotlib库来显示图像,然后将图像传递给preprep_img函数以便输出预测结果,最后使用predict_result函数获得结果并最终打印。

img_input = input("Enter the path of an image: ")
display_and_predict(img_input)
Salin selepas log masuk

如果您运行上面的程序片断并输入数据集中图像的路径,那么您将得到所期望的输出。

Latihan tersuai bagi model pembelajaran mendalam menggunakan teknik pembelajaran pemindahan

预测结果示意图

请注意,到目前为止该模型是使用迁移学习技术成功创建的,而无需编写任何一系列神经网络层相关代码。

现在,这个模型可以用于开发能够进行图像识别的Web应用程序了。文章的最后所附链接处提供了如何将该模型应用到Flask应用程序中的完整实现源码。

结论

本文中我们介绍了使用预先训练的模型或迁移学习技术来制作一个定制的深度学习模型的过程。

到目前为止,您已经了解了创建一个完整的深度学习模型所涉及的每一步。归纳起来看,所使用的总体步骤包括:

  • 准备数据集
  • 预处理数据
  • 创建模型
  • 保存自定义模型
  • 测试自定义模型

最后,您可以从​​GitHub​​上获取本文示例项目完整的源代码。

译者介绍

朱先忠,51CTO社区编辑,51CTO专家博客、讲师,潍坊一所高校计算机教师,自由编程界老兵一枚。

原文标题:Trained A Custom Deep Learning Model Using A Transfer Learning Technique​,作者:Sachin Pal​

Atas ialah kandungan terperinci Latihan tersuai bagi model pembelajaran mendalam menggunakan teknik pembelajaran pemindahan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

sumber:51cto.com
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan