Rumah Peranti teknologi AI Tiga pemenang Anugerah Turing membahaskan di Forum Heidelberg sama ada pembelajaran mendalam boleh mencapai penaakulan peringkat manusia

Tiga pemenang Anugerah Turing membahaskan di Forum Heidelberg sama ada pembelajaran mendalam boleh mencapai penaakulan peringkat manusia

Apr 23, 2023 pm 08:22 PM
sistem pembelajaran yang mendalam

Pemenang Anugerah Turing yang berusia 85 tahun, Raj Reddy menyertai Forum Penerima Anugerah Heidelberg ke-9 baru-baru ini. Dia mengeluh dengan ikhlas: "Saya telah bekerja dalam bidang kecerdasan buatan selama hampir 60 tahun, tetapi saya tidak pernah menyangka bahawa teknologi ini akan menjadi praktikal dalam hidup saya >10 tahun yang lalu, pada tahun 2012, pembelajaran mendalam mencapai kejayaan." Pada masa itu, algoritma inovatif untuk klasifikasi imej berdasarkan rangkaian saraf berbilang lapisan tiba-tiba terbukti jauh lebih baik daripada semua algoritma sebelumnya. Kejayaan ini membolehkan aplikasi pembelajaran mendalam dalam bidang seperti pengecaman pertuturan dan imej, terjemahan automatik dan transkripsi, dan robotik.

Tiga pemenang Anugerah Turing membahaskan di Forum Heidelberg sama ada pembelajaran mendalam boleh mencapai penaakulan peringkat manusiaMemandangkan pembelajaran mendalam diterapkan ke dalam lebih banyak aplikasi harian, semakin banyak contoh ralat yang mungkin muncul: sistem kecerdasan buatan akan mendiskriminasi dan merumuskan stereotaip Tayangan, membuat keputusan yang sukar difahami dan memerlukan sejumlah besar data dan kadangkala sejumlah besar tenaga. ​

Dalam konteks ini, Forum Penerima Anugerah Heidelberg ke-9 menganjurkan seminar mengenai aplikasi dan kesan pembelajaran mendalam untuk kira-kira 200 penyelidik muda dari lebih 50 buah negara. Perbincangan termasuk pemenang Anugerah Turing Yoshua Bengio, Yann LeCun, dan Raj Reddy, pemenang Anugerah Pengkomputeran ACM 2011 Sanjeev Arora, dan penyelidik Shannon Vallor, Been Kim, Dina Machuve, dan Shakir Mohamed.

Ketua Meta Saintis AI Yann LeCun adalah ahli panel yang paling optimistik: “Terdapat ramai orang yang mendakwa bahawa pembelajaran mendalam tidak boleh melakukan ini atau itu, dan kebanyakan dakwaan ini telah diselesaikan selepas beberapa tahun bekerja Terbukti salah Sepanjang lima tahun yang lalu, pembelajaran mendalam telah dapat melakukan perkara yang tidak dapat kita bayangkan, dan kemajuan semakin pesat, sebagai contoh, Facebook syarikat itu 96% ucapan benci, meningkat daripada 40% kira-kira empat tahun lalu. Beliau mengaitkan peningkatan ini dengan pembelajaran mendalam. "Kami dihujani dengan maklumat setiap hari, dan ia semakin teruk. Kami memerlukan lebih banyak sistem automatik yang membolehkan kami menyaring maklumat ini." Universiti Edinburgh di UK, membantah pandangan LeCun bahawa teknologi hanya bergerak ke hadapan, ia nampaknya mempunyai kehendaknya sendiri, dan masyarakat hanya perlu menyesuaikan diri. “Itulah sebabnya kita menghadapi beberapa masalah yang kita hadapi Teknologi boleh mengambil banyak jalan bercabang, dan orang ramai memutuskan sistem pembelajaran mendalam yang dibina dan dibina oleh manusia berdasarkan nilai, insentif dan struktur kuasa mereka sendiri. Penyebaran adalah artifak langsung, dan oleh itu kami bertanggungjawab sepenuhnya untuknya 》​

Salah satu kritikan terhadap pembelajaran mendalam ialah walaupun ia mahir dalam pengecaman corak, ia tidak sesuai pada masa ini. untuk itu. Penaakulan logik, manakala AI simbolik kuno sesuai. Walau bagaimanapun, kedua-dua Bengio dan LeCun tidak melihat sebab mengapa sistem pembelajaran mendalam tidak boleh digunakan untuk membuat alasan. Seperti yang diperhatikan Bengio, "Manusia juga menggunakan beberapa jenis rangkaian saraf dalam otak mereka, dan saya percaya ada cara untuk mencapai penaakulan seperti manusia melalui seni bina pembelajaran mendalam." menambah bahawa dia tidak fikir hanya meningkatkan rangkaian saraf hari ini akan mencukupi. "Saya percaya kita boleh menarik lebih banyak inspirasi daripada biologi dan kecerdasan manusia untuk merapatkan jurang semasa antara kecerdasan buatan dan kecerdasan manusia

Teori Komputer di Princeton University Scientist Sanjeev Arora menambah bahawa ia bukan." hanya pembelajaran mendalam yang tidak boleh menaakul, tetapi kita juga tidak boleh menaakul dengan rangkaian neural dalam. "Kita perlu memahami lebih lanjut tentang apa yang berlaku di dalam kotak hitam sistem pembelajaran mendalam, dan itulah yang saya cuba lakukan," kata Arora Raj Reddy setakat ini Ahli kumpulan paling lama dalam komuniti kecerdasan buatan , beliau telah terlibat dalam penyelidikan kedoktoran perintis kecerdasan buatan John McCarthy sejak tahun 1960-an. Reddy melihat gelas itu separuh penuh, bukan separuh kosong. "Aplikasi penting pembelajaran mendalam adalah untuk membantu orang di bahagian bawah piramid sosial. Kira-kira 2 bilion orang di dunia tidak boleh membaca atau menulis. Pelbagai teknologi bahasa kini cukup baik untuk digunakan, seperti pengecaman pertuturan dan terjemahan. Saya bekerja dalam bidang ini Selama hampir 60 tahun, saya tidak pernah menjangkakan bahawa teknologi ini akan menjadi praktikal dalam hidup saya, dan bahawa dalam sepuluh tahun walaupun orang yang buta huruf akan dapat membaca mana-mana buku, menonton mana-mana filem, dan bercakap dengan sesiapa sahaja, di mana-mana sahaja. dunia, dalam bahasa ibunda mereka.” ​

Walau bagaimanapun, pengendalian bahasa khusus yang lebih kecil masih menjadi masalah yang tidak dapat diselesaikan untuk teknik pembelajaran mendalam kerana lebih sedikit data yang tersedia. Di Afrika sahaja, terdapat 2,000 bahasa yang dituturkan tetapi tiada teknologi AI tersedia, kata perunding sains data Dina Machuve. Adalah penting untuk pergi ke komuniti dan melihat perkara yang berkesan untuk komuniti itu, jadi apabila mencari aplikasi pembelajaran mendalam untuk Afrika, Machuve memfokuskan pada aplikasi imej - "Kami telah membangunkan pengesanan awal penyakit ayam dan penyakit tanaman berdasarkan sistem pengesanan imej ." ​

Malangnya, dalam banyak cara, Afrika kekal sebagai "benua yang hilang" dalam penyelidikan dan penggunaan pembelajaran mendalam, tambah Shakir Mohamed, seorang penyelidik di DeepMind. “Kami mengira berapa banyak kertas daripada orang Afrika telah diserahkan di NeurIPS, persidangan pemprosesan maklumat saraf yang terkenal, antara 2006 dan 2016, dan jawapannya ialah: 0. Perkara yang sama berlaku untuk Amerika Latin, mungkin 1. Saya harap anda semua Orang , di mana sahaja anda berada, ambil serius soal perwakilan, siapa yang melakukan kerja, di mana ia dilakukan dan bagaimana anda berkongsi pengalaman anda dengan orang lain.”​

Been Kim , seorang saintis penyelidikan di Google Brain, berkata dia berharap semua orang menyedari bahawa pembelajaran mendalam bukanlah alat ajaib yang boleh menyelesaikan semua masalah sosial. Malah, dia memerhati, "Mungkin terdapat penyelesaian bukan AI yang lebih sesuai untuk masalah anda berbanding pembelajaran mesin. Anda perlu berhenti dan bertanya: Adakah ini alat yang betul?"

Apabila ditanya apa yang orang awam patut tahu tentang kecerdasan buatan dan prospeknya, Mohamed berkata: "Masa depan masih belum diputuskan. Kita masih boleh mencipta dan membentuk masa depan, dan itulah yang harus kita sentiasa ingat."

Atas ialah kandungan terperinci Tiga pemenang Anugerah Turing membahaskan di Forum Heidelberg sama ada pembelajaran mendalam boleh mencapai penaakulan peringkat manusia. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Pendaraban matriks universal CUDA: dari kemasukan kepada kemahiran! Pendaraban matriks universal CUDA: dari kemasukan kepada kemahiran! Mar 25, 2024 pm 12:30 PM

Pendaraban Matriks Umum (GEMM) ialah bahagian penting dalam banyak aplikasi dan algoritma, dan juga merupakan salah satu petunjuk penting untuk menilai prestasi perkakasan komputer. Penyelidikan mendalam dan pengoptimuman pelaksanaan GEMM boleh membantu kami lebih memahami pengkomputeran berprestasi tinggi dan hubungan antara perisian dan sistem perkakasan. Dalam sains komputer, pengoptimuman GEMM yang berkesan boleh meningkatkan kelajuan pengkomputeran dan menjimatkan sumber, yang penting untuk meningkatkan prestasi keseluruhan sistem komputer. Pemahaman yang mendalam tentang prinsip kerja dan kaedah pengoptimuman GEMM akan membantu kami menggunakan potensi perkakasan pengkomputeran moden dengan lebih baik dan menyediakan penyelesaian yang lebih cekap untuk pelbagai tugas pengkomputeran yang kompleks. Dengan mengoptimumkan prestasi GEMM

Sistem pemanduan pintar Qiankun ADS3.0 Huawei akan dilancarkan pada bulan Ogos dan akan dilancarkan pada Xiangjie S9 buat kali pertama Sistem pemanduan pintar Qiankun ADS3.0 Huawei akan dilancarkan pada bulan Ogos dan akan dilancarkan pada Xiangjie S9 buat kali pertama Jul 30, 2024 pm 02:17 PM

Pada 29 Julai, pada majlis pelepasan kereta baharu AITO Wenjie yang ke-400,000, Yu Chengdong, Pengarah Urusan Huawei, Pengerusi Terminal BG, dan Pengerusi Smart Car Solutions BU, menghadiri dan menyampaikan ucapan dan mengumumkan bahawa model siri Wenjie akan akan dilancarkan tahun ini Pada bulan Ogos, Huawei Qiankun ADS 3.0 versi telah dilancarkan, dan ia dirancang untuk terus naik taraf dari Ogos hingga September. Xiangjie S9, yang akan dikeluarkan pada 6 Ogos, akan memperkenalkan sistem pemanduan pintar ADS3.0 Huawei. Dengan bantuan lidar, versi Huawei Qiankun ADS3.0 akan meningkatkan keupayaan pemanduan pintarnya, mempunyai keupayaan bersepadu hujung-ke-hujung, dan mengguna pakai seni bina hujung ke hujung baharu GOD (pengenalpastian halangan am)/PDP (ramalan). membuat keputusan dan kawalan), menyediakan fungsi NCA pemanduan pintar dari ruang letak kereta ke ruang letak kereta, dan menaik taraf CAS3.0

Di luar ORB-SLAM3! SL-SLAM: Adegan bertekstur lemah ringan, kegelisahan teruk dan lemah semuanya dikendalikan Di luar ORB-SLAM3! SL-SLAM: Adegan bertekstur lemah ringan, kegelisahan teruk dan lemah semuanya dikendalikan May 30, 2024 am 09:35 AM

Ditulis sebelum ini, hari ini kita membincangkan bagaimana teknologi pembelajaran mendalam boleh meningkatkan prestasi SLAM berasaskan penglihatan (penyetempatan dan pemetaan serentak) dalam persekitaran yang kompleks. Dengan menggabungkan kaedah pengekstrakan ciri dalam dan pemadanan kedalaman, di sini kami memperkenalkan sistem SLAM visual hibrid serba boleh yang direka untuk meningkatkan penyesuaian dalam senario yang mencabar seperti keadaan cahaya malap, pencahayaan dinamik, kawasan bertekstur lemah dan seks yang teruk. Sistem kami menyokong berbilang mod, termasuk konfigurasi monokular, stereo, monokular-inersia dan stereo-inersia lanjutan. Selain itu, ia juga menganalisis cara menggabungkan SLAM visual dengan kaedah pembelajaran mendalam untuk memberi inspirasi kepada penyelidikan lain. Melalui percubaan yang meluas pada set data awam dan data sampel sendiri, kami menunjukkan keunggulan SL-SLAM dari segi ketepatan kedudukan dan keteguhan penjejakan.

Versi sistem Apple 16 manakah yang terbaik? Versi sistem Apple 16 manakah yang terbaik? Mar 08, 2024 pm 05:16 PM

Versi terbaik sistem Apple 16 ialah iOS16.1.4 Versi terbaik sistem iOS16 mungkin berbeza dari orang ke orang Penambahan dan peningkatan dalam pengalaman penggunaan harian juga telah dipuji oleh ramai pengguna. Versi sistem Apple 16 yang manakah adalah yang terbaik Jawapan: iOS16.1.4 Versi terbaik sistem iOS 16 mungkin berbeza dari orang ke orang. Menurut maklumat awam, iOS16, yang dilancarkan pada 2022, dianggap sebagai versi yang sangat stabil dan berprestasi, dan pengguna cukup berpuas hati dengan pengalaman keseluruhannya. Selain itu, penambahan ciri baharu dan penambahbaikan dalam pengalaman penggunaan harian dalam iOS16 juga telah diterima baik oleh ramai pengguna. Terutamanya dari segi hayat bateri yang dikemas kini, prestasi isyarat dan kawalan pemanasan, maklum balas pengguna agak positif. Walau bagaimanapun, memandangkan iPhone14

Fahami dalam satu artikel: kaitan dan perbezaan antara AI, pembelajaran mesin dan pembelajaran mendalam Fahami dalam satu artikel: kaitan dan perbezaan antara AI, pembelajaran mesin dan pembelajaran mendalam Mar 02, 2024 am 11:19 AM

Dalam gelombang perubahan teknologi yang pesat hari ini, Kecerdasan Buatan (AI), Pembelajaran Mesin (ML) dan Pembelajaran Dalam (DL) adalah seperti bintang terang, menerajui gelombang baharu teknologi maklumat. Ketiga-tiga perkataan ini sering muncul dalam pelbagai perbincangan dan aplikasi praktikal yang canggih, tetapi bagi kebanyakan peneroka yang baru dalam bidang ini, makna khusus dan hubungan dalaman mereka mungkin masih diselubungi misteri. Jadi mari kita lihat gambar ini dahulu. Dapat dilihat bahawa terdapat korelasi rapat dan hubungan progresif antara pembelajaran mendalam, pembelajaran mesin dan kecerdasan buatan. Pembelajaran mendalam ialah bidang khusus pembelajaran mesin dan pembelajaran mesin

Super kuat! 10 algoritma pembelajaran mendalam teratas! Super kuat! 10 algoritma pembelajaran mendalam teratas! Mar 15, 2024 pm 03:46 PM

Hampir 20 tahun telah berlalu sejak konsep pembelajaran mendalam dicadangkan pada tahun 2006. Pembelajaran mendalam, sebagai revolusi dalam bidang kecerdasan buatan, telah melahirkan banyak algoritma yang berpengaruh. Jadi, pada pendapat anda, apakah 10 algoritma teratas untuk pembelajaran mendalam? Berikut adalah algoritma teratas untuk pembelajaran mendalam pada pendapat saya Mereka semua menduduki kedudukan penting dari segi inovasi, nilai aplikasi dan pengaruh. 1. Latar belakang rangkaian saraf dalam (DNN): Rangkaian saraf dalam (DNN), juga dipanggil perceptron berbilang lapisan, adalah algoritma pembelajaran mendalam yang paling biasa Apabila ia mula-mula dicipta, ia dipersoalkan kerana kesesakan kuasa pengkomputeran tahun, kuasa pengkomputeran, Kejayaan datang dengan letupan data. DNN ialah model rangkaian saraf yang mengandungi berbilang lapisan tersembunyi. Dalam model ini, setiap lapisan menghantar input ke lapisan seterusnya dan

Sentiasa baru! Siri Huawei Mate60 dinaik taraf kepada HarmonyOS 4.2: Peningkatan awan AI, Dialek Xiaoyi sangat mudah digunakan Sentiasa baru! Siri Huawei Mate60 dinaik taraf kepada HarmonyOS 4.2: Peningkatan awan AI, Dialek Xiaoyi sangat mudah digunakan Jun 02, 2024 pm 02:58 PM

Pada 11 April, Huawei secara rasmi mengumumkan pelan peningkatan 100 mesin HarmonyOS 4.2 kali ini, lebih daripada 180 peranti akan mengambil bahagian dalam peningkatan, meliputi telefon bimbit, tablet, jam tangan, fon kepala, skrin pintar dan peranti lain. Pada bulan lalu, dengan kemajuan mantap pelan peningkatan 100 mesin HarmonyOS4.2, banyak model popular termasuk Huawei Pocket2, siri Huawei MateX5, siri nova12, siri Huawei Pura, dll. juga telah mula menaik taraf dan menyesuaikan diri, yang bermaksud bahawa akan ada Lebih ramai pengguna model Huawei boleh menikmati pengalaman biasa dan selalunya baharu yang dibawa oleh HarmonyOS. Berdasarkan maklum balas pengguna, pengalaman model siri Huawei Mate60 telah bertambah baik dalam semua aspek selepas menaik taraf HarmonyOS4.2. Terutamanya Huawei M

Penjelasan terperinci tentang cara mengubah suai tarikh sistem dalam pangkalan data Oracle Penjelasan terperinci tentang cara mengubah suai tarikh sistem dalam pangkalan data Oracle Mar 09, 2024 am 10:21 AM

Penjelasan terperinci tentang kaedah mengubah suai tarikh sistem dalam pangkalan data Oracle Dalam pangkalan data Oracle, kaedah mengubah suai tarikh sistem terutamanya melibatkan pengubahsuaian parameter NLS_DATE_FORMAT dan menggunakan fungsi SYSDATE. Artikel ini akan memperkenalkan kedua-dua kaedah ini dan contoh kod khusus mereka secara terperinci untuk membantu pembaca lebih memahami dan menguasai operasi mengubah suai tarikh sistem dalam pangkalan data Oracle. 1. Ubah suai kaedah parameter NLS_DATE_FORMAT NLS_DATE_FORMAT ialah data Oracle

See all articles