Jadual Kandungan
Jeff Dean mengumumkan secara peribadi: Biarkan AI menyokong 1000 bahasa
Pembelajaran penyeliaan kendiri yang diperhalusi
Rumah Peranti teknologi AI Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Apr 25, 2023 pm 12:04 PM
Google Model

Minggu lepas, OpenAI mengeluarkan ChatGPT API dan Whisper API, yang baru sahaja mencetuskan karnival di kalangan pembangun.

Pada 6 Mac, Google melancarkan model penanda aras-USM. Ia bukan sahaja boleh menyokong lebih daripada 100 bahasa, malah bilangan parameter juga telah mencapai 2 bilion.

Sudah tentu model itu masih tidak dibuka kepada orang ramai, "Ini sangat Google"!

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Ringkasnya, model USM merangkumi 12 juta jam pertuturan dan 28 bilion ayat. Ia dilatih terlebih dahulu pada set data tidak berlabel 300 bahasa berbeza dan diperhalusi pada set latihan berlabel yang lebih kecil.

Penyelidik Google berkata walaupun set latihan anotasi yang digunakan untuk penalaan halus hanya 1/7 daripada Whisper, USM mempunyai prestasi yang setara atau lebih baik, dan juga keupayaan untuk menyesuaikan diri dengan bahasa dan data baharu dengan cekap.

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Alamat kertas: https://arxiv.org/abs/2303.01037

Hasilnya menunjukkan bahawa USM bukan sahaja mencapai SOTA dalam pengecaman pertuturan automatik berbilang bahasa dan penilaian tugas terjemahan teks pertuturan, tetapi juga sebenarnya boleh digunakan dalam penjanaan sari kata YouTube.

Pada masa ini, bahasa yang menyokong pengesanan dan terjemahan automatik termasuk bahasa Inggeris, Cina dan bahasa kecil arus perdana seperti Assam.

Paling penting, ia juga boleh digunakan untuk terjemahan masa nyata cermin mata AR masa depan yang ditunjukkan oleh Google pada persidangan IO tahun lepas.

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Jeff Dean mengumumkan secara peribadi: Biarkan AI menyokong 1000 bahasa

Sementara Microsoft dan Google berdebat tentang siapa yang mempunyai AI chatbot yang lebih baik, ketahuilah bahawa model bahasa yang besar boleh digunakan untuk lebih daripada itu.

Pada November tahun lalu, Google mula-mula mengumumkan projek baharu untuk "membangunkan model bahasa kecerdasan buatan yang menyokong 1,000 bahasa yang paling biasa digunakan di dunia ."

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Pada tahun yang sama, Meta turut mengeluarkan model yang dipanggil "No Language Left Behind" . Ia juga mendakwa bahawa ia boleh menterjemah lebih daripada 200 bahasa dan bertujuan untuk mencipta "penterjemah universal".

Google menerangkan keluaran model terbaharu sebagai "langkah kritikal" ke arah matlamatnya.

Boleh dikatakan ramai hero bersaing dalam membina model bahasa.

Menurut khabar angin, Google merancang untuk mempamerkan lebih daripada 20 produk yang dikuasakan oleh kecerdasan buatan pada persidangan I/O tahunan tahun ini.

Pada masa ini, pengecaman pertuturan automatik menghadapi banyak cabaran:

  • Diselia Tradisional kaedah pembelajaran kurang berskala

Dalam kaedah tradisional, data audio memerlukan pelabelan manual yang memakan masa dan mahal, atau diperoleh daripada yang sedia ada dikumpulkan daripada sumber transkripsi, yang mungkin sukar dicari untuk bahasa yang tidak mempunyai perwakilan yang luas.

  • Sambil mengembangkan liputan dan kualiti bahasa, model mesti dipertingkatkan dengan cara yang cekap dari segi pengiraan

Ini memerlukan algoritma untuk dapat menggunakan sejumlah besar data daripada sumber yang berbeza, mendayakan kemas kini model tanpa memerlukan latihan semula yang lengkap dan dapat membuat generalisasi kepada bahasa dan penggunaan baharu kes .

Pembelajaran penyeliaan kendiri yang diperhalusi

Menurut kertas kerja, latihan USM menggunakan tiga pangkalan data: set data audio tidak berpasangan, data Teks tidak berpasangan set, korpus ASR berpasangan.

  • Set Data Audio Tidak Berpasangan

Termasuk YT-NTL-U (lebih 12 juta jam data audio tak berteg YouTube) dan Pub-U (lebih 429,000 jam kandungan pertuturan dalam 51 bahasa)

  • Dataset teks tidak berpasangan

Web- NTL (28 bilion ayat dalam lebih 1140 bahasa berbeza)

  • Korpus ASR berpasangan

YT-SUP+ dan Pub-S corpora (lebih 10,000 jam kandungan audio dan teks yang sepadan)

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

USM menggunakan struktur pengekod-penyahkod standard, di mana penyahkod boleh menjadi CTC, RNN-T atau LAS.

Untuk pengekod, USM menggunakan Conformor, atau Convolution-enhanced Transformer.

Proses latihan dibahagikan kepada tiga peringkat.

Pada peringkat awal, pra-latihan tanpa pengawasan dilakukan menggunakan BEST-RQ (BERT-based Random Projection Quantizer for Speech Pre-training). Matlamatnya adalah untuk mengoptimumkan RQ.

Pada peringkat seterusnya, model pembelajaran perwakilan pertuturan dilatih lagi.

Gunakan PALING (Pralatihan Diselia Berbilang Objek) untuk menyepadukan maklumat daripada data teks lain.

Model memperkenalkan modul pengekod tambahan yang mengambil teks sebagai input dan memperkenalkan lapisan tambahan untuk menggabungkan pengekod pertuturan dan output pengekod teks, dan bersama-sama melatih model pada ucapan tidak berlabel, ucapan berlabel dan data teks.

Langkah terakhir ialah memperhalusi tugas ASR (pengecaman pertuturan automatik) dan AST (terjemahan pertuturan automatik) Model USM yang telah dilatih sahaja sejumlah kecil data Penyeliaan boleh mencapai prestasi yang baik.

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Proses latihan keseluruhan USM

Bagaimanakah prestasi USM yang diuji oleh Google pada sari kata YouTube, promosi tugasan ASR hiliran dan terjemahan pertuturan automatik.

Prestasi pada sari kata berbilang bahasa YouTube

Data YouTube yang diselia termasuk 73 bahasa, dengan purata kurang daripada 3,000 jam data bagi setiap bahasa. Walaupun data penyeliaan terhad, model itu mencapai purata kadar ralat perkataan (WER) kurang daripada 30% merentas 73 bahasa, yang lebih rendah daripada model terkini di Amerika Syarikat.

Selain itu, Google membandingkannya dengan model Whisper (big-v2) yang dilatih dengan lebih 400,000 jam data beranotasi.

Antara 18 bahasa ​​yang Whisper boleh menyahkod, kadar ralat penyahkodannya kurang daripada 40%, manakala purata kadar ralat USM hanya 32.7%.

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Promosi tugas hiliran ASR

Pada set data yang tersedia secara terbuka, USM menunjukkan prestasi yang lebih rendah pada CORAAL (Bahasa Inggeris Dialek Afrika Amerika), SpeechStew (Bahasa Inggeris-AS) dan FLEURS (102 bahasa) berbanding Whisper WER, tidak kira sama ada terdapat dalam domain data latihan.

Perbezaan FLEURS antara kedua-dua model amat ketara.

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Prestasi pada tugas AST

Memperhalusi USM pada set data CoVoST.

Bahagikan bahasa dalam set data kepada kategori tinggi, sederhana dan rendah mengikut ketersediaan sumber dan hitung skor BLEU pada setiap kategori (lebih tinggi lebih baik), USM menunjukkan prestasi yang lebih baik daripada Whisper dalam setiap kategori.

Penyelidikan mendapati bahawa pra-latihan BEST-RQ ialah kaedah yang berkesan untuk melanjutkan pembelajaran perwakilan pertuturan kepada set data yang besar.

Apabila digabungkan dengan suntikan teks dalam KEBANYAKAN, ia meningkatkan kualiti tugas pertuturan hiliran, mencapai hasil terkini pada FLEURS dan CoVoST 2 prestasi penanda aras.

Dengan melatih modul penyesuai sisa ringan, KEBANYAKAN mewakili keupayaan untuk menyesuaikan diri dengan cepat kepada domain baharu. Modul penyesuai yang tinggal ini hanya meningkatkan parameter sebanyak 2%.

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Google berkata pada masa ini, USM menyokong lebih daripada 100 bahasa dan akan berkembang ke lebih daripada 1000 bahasa pada masa hadapan. Dengan teknologi ini, semua orang mungkin selamat untuk mengembara ke seluruh dunia.

Malah, produk cermin mata Google AR terjemahan masa nyata akan datang akan menarik ramai peminat.

Bagaimanapun, aplikasi teknologi ini masih jauh lagi.

Lagipun, dalam ucapannya di Persidangan IO kepada dunia, Google turut menulis teks Arab ke belakang, menarik ramai netizen untuk menonton.

Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik

Atas ialah kandungan terperinci Kalahkan OpenAI sekali lagi! Google mengeluarkan 2 bilion parameter model universal untuk mengecam dan menterjemah lebih daripada 100 bahasa secara automatik. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Sesame Open Door Exchange Web Pautan Pautan Gerbang Perdagangan Laman Web Pendaftaran Terkini Sesame Open Door Exchange Web Pautan Pautan Gerbang Perdagangan Laman Web Pendaftaran Terkini Feb 28, 2025 am 11:06 AM

Artikel ini memperkenalkan proses pendaftaran versi web Web Open Exchange (GATE.IO) dan aplikasi Perdagangan Gate secara terperinci. Sama ada pendaftaran web atau pendaftaran aplikasi, anda perlu melawat laman web rasmi atau App Store untuk memuat turun aplikasi tulen, kemudian isi nama pengguna, kata laluan, e -mel, nombor telefon bimbit dan maklumat lain, dan lengkap e -mel atau pengesahan telefon bimbit.

Mengapa pautan Bybit Exchange tidak dimuat turun dan dipasang secara langsung? Mengapa pautan Bybit Exchange tidak dimuat turun dan dipasang secara langsung? Feb 21, 2025 pm 10:57 PM

Mengapa pautan Bybit Exchange tidak dimuat turun dan dipasang secara langsung? Bybit adalah pertukaran cryptocurrency yang menyediakan perkhidmatan perdagangan kepada pengguna. Aplikasi mudah alih Exchange tidak boleh dimuat turun terus melalui AppStore atau GooglePlay untuk sebab -sebab berikut: 1. Aplikasi pertukaran cryptocurrency sering tidak memenuhi keperluan ini kerana ia melibatkan perkhidmatan kewangan dan memerlukan peraturan dan standard keselamatan tertentu. 2. Undang -undang dan Peraturan Pematuhan di banyak negara, aktiviti yang berkaitan dengan urus niaga cryptocurrency dikawal atau terhad. Untuk mematuhi peraturan ini, aplikasi bybit hanya boleh digunakan melalui laman web rasmi atau saluran yang diberi kuasa lain

WEB OPEN DOOR EXCHANGE WEB PAGE LOGIN VERSI VERSI UNTUK GATEIO Laman Web Rasmi Pintu Masuk WEB OPEN DOOR EXCHANGE WEB PAGE LOGIN VERSI VERSI UNTUK GATEIO Laman Web Rasmi Pintu Masuk Mar 04, 2025 pm 11:48 PM

Pengenalan terperinci kepada operasi log masuk versi Web Open Exchange, termasuk langkah masuk dan proses pemulihan kata laluan.

Platform Perdagangan Pintu Terbuka Sesame Muat turun Versi Mudah Alih Platform Perdagangan Platform Perdagangan Alamat Muat Turun Platform Perdagangan Pintu Terbuka Sesame Muat turun Versi Mudah Alih Platform Perdagangan Platform Perdagangan Alamat Muat Turun Feb 28, 2025 am 10:51 AM

Adalah penting untuk memilih saluran rasmi untuk memuat turun aplikasi dan memastikan keselamatan akaun anda.

Top 10 Disyorkan untuk App Perdagangan Aset Digital Crypto (2025 Global Ranking) Top 10 Disyorkan untuk App Perdagangan Aset Digital Crypto (2025 Global Ranking) Mar 18, 2025 pm 12:15 PM

Artikel ini mencadangkan sepuluh platform perdagangan cryptocurrency teratas yang memberi perhatian kepada, termasuk Binance, OKX, Gate.io, Bitflyer, Kucoin, Bybit, Coinbase Pro, Kraken, BYDFI dan Xbit yang desentralisasi. Platform ini mempunyai kelebihan mereka sendiri dari segi kuantiti mata wang transaksi, jenis urus niaga, keselamatan, pematuhan, dan ciri khas. Memilih platform yang sesuai memerlukan pertimbangan yang komprehensif berdasarkan pengalaman perdagangan anda sendiri, toleransi risiko dan keutamaan pelaburan. Semoga artikel ini membantu anda mencari saman terbaik untuk diri sendiri

Portal Log Masuk Versi Rasmi Binance Binance Portal Log Masuk Versi Rasmi Binance Binance Feb 21, 2025 pm 05:42 PM

Untuk mengakses versi Login Laman Web Binance yang terkini, ikuti langkah mudah ini. Pergi ke laman web rasmi dan klik butang "Login" di sudut kanan atas. Pilih kaedah log masuk anda yang sedia ada. Masukkan nombor mudah alih berdaftar atau e -mel dan kata laluan anda dan pengesahan lengkap (seperti kod pengesahan mudah alih atau Google Authenticator). Selepas pengesahan yang berjaya, anda boleh mengakses Portal Log masuk laman web rasmi Binance.

Bitget Trading Platform Rasmi App Muat turun dan Alamat Pemasangan Bitget Trading Platform Rasmi App Muat turun dan Alamat Pemasangan Feb 25, 2025 pm 02:42 PM

Panduan ini menyediakan langkah muat turun dan pemasangan terperinci untuk aplikasi Bitget Exchange rasmi, sesuai untuk sistem Android dan iOS. Panduan ini mengintegrasikan maklumat dari pelbagai sumber yang berwibawa, termasuk laman web rasmi, App Store, dan Google Play, dan menekankan pertimbangan semasa muat turun dan pengurusan akaun. Pengguna boleh memuat turun aplikasinya dari saluran rasmi, termasuk App Store, muat turun APK laman web rasmi dan melompat laman web rasmi, dan lengkap pendaftaran, pengesahan identiti dan tetapan keselamatan. Di samping itu, panduan itu merangkumi soalan dan pertimbangan yang sering ditanya, seperti

Alamat muat turun terbaru Bitget pada tahun 2025: Langkah -langkah untuk mendapatkan aplikasi rasmi Alamat muat turun terbaru Bitget pada tahun 2025: Langkah -langkah untuk mendapatkan aplikasi rasmi Feb 25, 2025 pm 02:54 PM

Panduan ini menyediakan langkah muat turun dan pemasangan terperinci untuk aplikasi Bitget Exchange rasmi, sesuai untuk sistem Android dan iOS. Panduan ini mengintegrasikan maklumat dari pelbagai sumber yang berwibawa, termasuk laman web rasmi, App Store, dan Google Play, dan menekankan pertimbangan semasa muat turun dan pengurusan akaun. Pengguna boleh memuat turun aplikasinya dari saluran rasmi, termasuk App Store, muat turun APK laman web rasmi dan melompat laman web rasmi, dan lengkap pendaftaran, pengesahan identiti dan tetapan keselamatan. Di samping itu, panduan itu merangkumi soalan dan pertimbangan yang sering ditanya, seperti

See all articles