Rumah > Java > javaTutorial > teks badan

Bagaimana untuk menambah elemen traversal ke Java HashSet

WBOY
Lepaskan: 2023-04-28 13:04:06
ke hadapan
1365 orang telah melayarinya

Rajah kelas HashSet

Bagaimana untuk menambah elemen traversal ke Java HashSet

Penerangan ringkas HashSet

1.HashSet melaksanakan antara muka Set

2.HashSet Lapisan bawah sebenarnya dilaksanakan oleh HashMap

public HashSet() {
        map = new HashMap<>();
}
Salin selepas log masuk

3 Anda boleh menyimpan null, tetapi hanya ada satu null

4 menjamin bahawa elemen itu Disusun (iaitu, tiada jaminan bahawa susunan menyimpan elemen adalah sama dengan susunan mengeluarkan elemen), bergantung pada HashSet, dan kemudian tentukan hasil indeks hash

5. Tidak boleh ada unsur pendua

Penerangan mengenai mekanisme asas HashSet

Lapisan bawah ialah HashSet, HashMap Lapisan bawah ialah HashMaptatasusunan + dipautkan senarai + pokok merah-hitam

Mensimulasikan struktur tatasusunan + senarai terpaut

Bagaimana untuk menambah elemen traversal ke Java HashSet

/**
 * 模拟 HashSet 数组+链表的结构
 */
public class HashSetStructureMain {
    public static void main(String[] args) {
        // 模拟一个 HashSet(HashMap) 的底层结构
        // 1. 创建一个数组,数组的类型为 Node[]
        // 2. 有些地方直接把 Node[] 数组称为 表
        Node[] table = new Node[16];
        System.out.println(table);
        // 3. 创建节点
        Node john = new Node("john", null);
        table[2] = jhon; // 把节点 john 放在数组索引为 2 的位置
        Node jack = new Node("jack", null);
        jhon.next = jack; // 将 jack 挂载到 jhon 的后面
        Node rose = new Node("rose", null);
        jack.next = rose; // 将 rose 挂载到 jack 的后面
        Node lucy = new Node("lucy", null);
        table[3] = lucy; // 将 lucy 放在数组索引为 3 的位置
        System.out.println(table);

    }
}

// 节点类 存储数据,可以指向下一个节点,从而形成链表
class Node{
    Object item; // 存放数据
    Node next; // 指向下一个节点
    public Node(Object item, Node next){
        this.item = item;
        this.next = next;
    }
}
Salin selepas log masuk

HashSet Mekanisme asas menambah elemen

HashSet Pelaksanaan asas penambahan elemen

1.

Mekanisme asas ialah HashSetHashMap

2. Apabila menambah elemen, anda akan mendapat

<🎜 terlebih dahulu > nilai elemen yang hendak ditambah, dan kemudian tukarkannya menjadi nilai indekshash 3. Tanya jadual data storan (tatasusunan Nod) untuk melihat sama ada lokasi

nilai indeks

sepadan dengan elemen table semasa yang akan ditambah telah pun menyimpan elemen lain 4 Jika kedudukan sepadan dengan semasa nilai indeks

tidak wujud

elemen lain, letakkan elemen semasa untuk ditambahkan ke dalam ini Kedudukan yang sepadan dengan nilai indeks 5. Jika terdapat elemen lain

pada kedudukan yang sepadan dengan

nilai indeks semasa, panggil perbandingan , jika hasilnya , maka berhenti menambah; jika hasilnya , maka letakkan 待添加元素.equals(已存在元素) elemen untuk ditambahkan true di belakang false elemen sedia ada ()Mekanisme pengembangan HashSet 已存在元素.next = 待添加元素

1. Lapisan bawah

ialah

Apabila elemen ditambahkan buat kali pertama, tatasusunan

mengembang kepada HashSet, HashMap (nilai kritikal) = topi * loadFactor(faktor pemuatan 0.75) = 12tablecap = 162 Jika tatasusunan threshold mencapai nilai kritikal 12, ia akan dikembangkan kepada

dan nilai kritikal baharu ialah

dan seterusnya table <. 🎜>3. Dalam Java8, jika bilangan elemen dalam senarai terpaut cap * 2 = 32 mencapai 32 * 0.75 = 24

(lalai ialah 8), dan saiz

>= (lalai ialah 64) , ia akan melakukan transformasi pokok (pokok merah-hitam) TREEIFY_THRESHOLDtableMIN_TREEIFY_CAPACITY4 Menentukan sama ada untuk mengembangkan adalah berdasarkan , iaitu sama ada untuk mengembang adalah berdasarkan bilangan elemen yang disimpan. dalam (

) Sama ada ia melebihi nilai kritikal, bukannya sama ada

melebihi nilai kritikal++size > thresholdHashMapHashSet menambah kod sumber elemensize

/**
 * HashSet 源码分析
 */
public class HashSetSourceMain {
    public static void main(String[] args) {
        HashSet hashSet = new HashSet();
        hashSet.add("java");
        hashSet.add("php");
        hashSet.add("java");
        System.out.println("set = " + hashSet);

        // 源码分析
        // 1. 执行 HashSet()
        /**
         * public HashSet() { // HashSet 底层是 HashMap
         *         map = new HashMap<>();
         *     }
         */

        // 2. 执行 add()
        /**
         * public boolean add(E e) { // e == "java"
         *         // HashSet 的 add() 方法其实是调用 HashMap 的 put()方法
         *         return map.put(e, PRESENT)==null; // (static) PRESENT = new Object(); 用于占位
         *     }
         */

        // 3. 执行 put()
        // hash(key) 得到 key(待存元素) 对应的hash值,并不等于 hashcode()
        // 算法是 h = key.hashCode()) ^ (h >>> 16
        /**
         * public V put(K key, V value) {
         *         return putVal(hash(key), key, value, false, true);
         *     }
         */

        // 4. 执行 putVal()
        // 定义的辅助变量:Node<K,V>[] tab; Node<K,V> p; int n, i;
        // table 是 HashMap 的一个属性,初始化为 null;transient Node<K,V>[] table;
        // resize() 方法,为 table 数组指定容量
        // p = tab[i = (n - 1) & hash] 计算 key的hash值所对应的 table 中的索引位置,将索引位置对应的 Node 赋给 p
        /**
         * final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
         *                    boolean evict) {
         *         Node<K,V>[] tab; Node<K,V> p; int n, i; // 辅助变量
         *         // table 就是 HashMap 的一个属性,类型是 Node[]
         *         // if 语句表示如果当前 table 是 null,或者 table.length == 0
         *         // 就是 table 第一次扩容,容量为 16
         *         if ((tab = table) == null || (n = tab.length) == 0)
         *             n = (tab = resize()).length;
         *         // 1. 根据 key,得到 hash 去计算key应该存放到 table 的哪个索引位置
         *         // 2. 并且把这个位置的索引值赋给 i;索引值对应的元素,赋给 p
         *         // 3. 判断 p 是否为 null
         *         // 3.1 如果 p 为 null,表示还没有存放过元素,就创建一个Node(key="java",value=PRESENT),并把这个元素放到 i 的索引位置
         *         // tab[i] = newNode(hash, key, value, null);
         *         if ((p = tab[i = (n - 1) & hash]) == null)
         *             tab[i] = newNode(hash, key, value, null);
         *         else {
         *             Node<K,V> e; K k; // 辅助变量
         *             // 如果当前索引位置对应的链表的第一个元素和待添加的元素的 hash值一样
         *             // 并且满足下面两个条件之一:
         *             // 1. 待添加的 key 与 p 所指向的 Node 节点的key 是同一个对象
         *             // 2. 待添加的 key.equals(p 指向的 Node 节点的 key) == true
         *             // 就认为当前待添加的元素是重复元素,添加失败
         *             if (p.hash == hash &&
         *                 ((k = p.key) == key || (key != null && key.equals(k))))
         *                 e = p;
         *             // 判断 当前 p 是不是一颗红黑树
         *             // 如果是一颗红黑树,就调用 putTreeVal,来进行添加
         *             else if (p instanceof TreeNode)
         *                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
         *             else {
         *                  // 如果 当前索引位置已经形成一个 链表,就使用 for 循环比较
         *                  // 将待添加元素依次和链表上的每个元素进行比较
         *                  // 1. 比较过程中如果出现待添加元素和链表中的元素有相同的,比较结束,出现重复元素,添加失败
         *                  // 2. 如果比较到链表最后一个元素,链表中都没出现与待添加元素相同的,就把当前待添加元素放到该链表最后的位置
         *                  // 注意:在把待添加元素添加到链表后,立即判断 该链表是否已经到达 8 个节点
         *                  // 如果到达,就调用 treeifyBin() 对当前这个链表进行数化(转成红黑树)
         *                  // 注意:在转成红黑树前,还要进行判断
         *                  // if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
         *                  //        resize();
         *                  // 如果上面条件成立,先对 table 进行扩容
         *                  // 如果上面条件不成立,才转成红黑树
         *                 for (int binCount = 0; ; ++binCount) {
         *                     if ((e = p.next) == null) {
         *                         p.next = newNode(hash, key, value, null);
         *                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
         *                             treeifyBin(tab, hash);
         *                         break;
         *                     }
         *                     if (e.hash == hash &&
         *                         ((k = e.key) == key || (key != null && key.equals(k))))
         *                         break;
         *                     p = e;
         *                 }
         *             }
         *             // e 不为 null ,说明添加失败
         *             if (e != null) { // existing mapping for key
         *                 V oldValue = e.value;
         *                 if (!onlyIfAbsent || oldValue == null)
         *                     e.value = value;
         *                 afterNodeAccess(e);
         *                 return oldValue;
         *             }
         *         }
         *         ++modCount;
         *         // 扩容:说明判断 table 是否扩容不是看 table 的length
         *         // 而是看 整个 HashMap 的 size(即已存元素个数)
         *         if (++size > threshold)
         *             resize();
         *         afterNodeInsertion(evict);
         *         return null;
         *     }
         */
    }
}
Salin selepas log masuk
table.length()HashSet melintasi mekanisme asas bagi elemen

HashSet merentasi mekanisme asas elemen Mekanisme

1 Lapisan bawah

ialah

, dan lelaran

juga dilaksanakan oleh

<. 🎜>HashSet2. HashMap sebenarnya memanggil HashSet kaedah HashMap

public Iterator<E> iterator() {
    return map.keySet().iterator();
}
Salin selepas log masuk

3.HashSet.iterator() mengembalikan objek HashMap dan KeySet().iterator() ialah kelas dalaman

public Set<K> keySet() {
    Set<K> ks = keySet;
    if (ks == null) {
        ks = new KeySet();
        keySet = ks;
    }
    return ks;
}
Salin selepas log masuk
KeySet()4.KeySet Kaedah mengembalikan objek KeySet, HashMap ialah kelas dalaman

public final Iterator<K> iterator()     { return new KeyIterator(); }
Salin selepas log masuk
KeySet().iterator()5 > (kelas dalaman KeyIterator) kelas dan melaksanakan Antara muka KeyIterator, iaitu, HashMap dan

ialah kelas yang sebenarnya melaksanakan

Iterator KeyIterator HashIterator

final class KeyIterator extends HashIterator
    implements Iterator<K> {
    public final K next() { return nextNode().key; }
}
Salin selepas log masuk
HashMap6 . Selepas pelaksanaan Iterator selesai, KeyIterator pada masa ini Nod elemen HashIterator

telah disimpan dalam objek.

Iterator iterator = HashSet.iterator;iterator

Kembali ke langkah 4, kaedah
    mengembalikan objek
  • new KeyIterator() 调用 KeyIterator 的无参构造器

  • 在这之前,会先调用其父类 HashIterator 的无参构造器

  • 因此,分析 HashIterator 的无参构造器就知道发生了什么

/**
*         Node<K,V> next;        // next entry to return
*         Node<K,V> current;     // current entry
*         int expectedModCount;  // for fast-fail
*         int index;             // current slot
* HashIterator() {
*             expectedModCount = modCount;
*             Node<K,V>[] t = table;
*             current = next = null;
*             index = 0;
*             if (t != null && size > 0) { // advance to first entry
*                 do {} while (index < t.length && (next = t[index++]) == null);
*             }
*         }
*/
Salin selepas log masuk
  • nextcurrentindex 都是 HashIterator 的属性

  • Node<K,V>[] t = table; 先把 Node 数组 talbe 赋给 t

  • current = next = null; currentnext 都置为 null

  • index = 0; index 置为 0

  • do {} while (index < t.length && (next = t[index++]) == null); 这个 do-while 会在 table 中遍历 Node 结点

  • 一旦 (next = t[index++]) == null 不成立 时,就说明找到了一个 table 中的 Node 结点

  • 将这个节点赋给 next,并退出当前 do-while 循环

  • 此时 Iterator iterator = HashSet.iterator; 就执行完了

  • 当前 iterator 的运行类型其实是 HashIterator,而 HashIteratornext 中存储着从 table 中遍历出来的一个 Node 结点

7.执行 iterator.hasNext

此时的 next 存储着一个 Node,所以并不为 null,返回 true

public final boolean hasNext() {
    return next != null;
}
Salin selepas log masuk

8.执行 iterator.next()

I.Node<K,V> e = next; 把当前存储着 Node 结点的 next 赋值给了 e

II.(next = (current = e).next) == null 判断当前结点的下一个结点是否为 null

  • (a). 如果当前结点的下一个结点为 null,就执行 do {} while (index < t.length && (next = t[index++]) == null);,在 table 数组中遍历,寻找 table 数组中的下一个 Node 并赋值给 next

  • (b). 如果当前结点的下一个结点不为 null,就将当前结点的下一个结点赋值给 next,并且此刻不会去 table 数组中遍历下一个 Node 结点

III.将找到的结点 e 返回

IV.之后每次执行 iterator.next() 都像 (a)(b) 那样去判断遍历,直到遍历完成

HashSet 遍历元素源码

/**
 * HashSet 源码分析
 */
public class HashSetSourceMain {
    public static void main(String[] args) {
        HashSet hashSet = new HashSet();
        hashSet.add("java");
        hashSet.add("php");
        hashSet.add("java");
        System.out.println("set = " + hashSet);
        // HashSet 迭代器实现原理
        // HashSet 底层是 HashMap,HashMap 底层是 数组 + 链表 + 红黑树
        // HashSet 本身没有实现迭代器,而是借由 HashMap 来实现的
        // 1. hashSet.iterator() 实际上是去调用 HashMap 的 keySet().iterator()
        /**
         * public Iterator iterator() {
         *         return map.keySet().iterator();
         *     }
         */
        // 2. KeySet() 方法返回一个 KeySet 对象,而 KeySet 是 HashMap 的一个内部类
        /**
         * public Set keySet() {
         *         Set ks = keySet;
         *         if (ks == null) {
         *             ks = new KeySet();
         *             keySet = ks;
         *         }
         *         return ks;
         *     }
         */
        // 3. KeySet().iterator() 方法返回一个 KeyIterator 对象,KeyIterator 是 HashMap的一个内部类
        /**
         * public final Iterator<K> iterator()     { return new KeyIterator(); }
         */
        // 4. KeyIterator 继承了 HashIterator(HashMap的内部类) 类,并实现了 Iterator 接口
        // 即 KeyIterator、HashIterator 才是真正实现 迭代器的类
        /**
         * final class KeyIterator extends HashIterator
         *         implements Iterator {
         *         public final K next() { return nextNode().key; }
         *     }
         */
        // 5. 当执行完 Iterator iterator = hashSet.iterator(); 后
        // 此时的 iterator 对象中已经存储了一个元素节点
        // 怎么做到的?
        // 回到第 3 步,KeySet().iterator() 方法返回一个 KeyIterator 对象
        // new KeyIterator() 调用 KeyIterator 的无参构造器
        // 在这之前,会先调用 KeyIterator 父类 HashIterator 的无参构造器
        // 因此分析 HashIterator 的无参构造器就知道发生了什么
        /**
         *         Node next;        // next entry to return
         *         Node current;     // current entry
         *         int expectedModCount;  // for fast-fail
         *         int index;             // current slot
         * HashIterator() {
         *             expectedModCount = modCount;
         *             Node<K,V>[] t = table;
         *             current = next = null;
         *             index = 0;
         *             if (t != null && size > 0) { // advance to first entry
         *                 do {} while (index < t.length && (next = t[index++]) == null);
         *             }
         *         }
         */
        // 5.0 next, current, index 都是 HashIterator 的属性
        // 5.1 Node<K,V>[] t = table; 先把 Node 数组 table 赋给 t
        // 5.2 current = next = null; 把 current 和 next 都置为 null
        // 5.3 index = 0; index 置为 0
        // 5.4 do {} while (index < t.length && (next = t[index++]) == null);
        // 这个 do{} while 循环会在 table 中 遍历 Node节点
        // 一旦 (next = t[index++]) == null 不成立时,就说明找到了一个 table 中的节点
        // 将这个节点赋给 next,并退出当前 do while循环
        // 此时 Iterator iterator = hashSet.iterator(); 就执行完了
        // 当前 iterator 的运行类型其实是 HashIterator,而 HashIterator 的 next 中存储着从 table 中遍历出来的一个 Node节点
        // 6. 执行 iterator.hasNext()
        /**
         * public final boolean hasNext() {
         *             return next != null;
         *         }
         */
        // 6.1 此时的 next 存储着一个 Node,所以并不为 null,返回 true
        // 7. 执行 iterator.next(),其实是去执行 HashIterator 的 nextNode()
        /**
         * final Node nextNode() {
         *             Node[] t;
         *             Node<K,V> e = next;
         *             if (modCount != expectedModCount)
         *                 throw new ConcurrentModificationException();
         *             if (e == null)
         *                 throw new NoSuchElementException();
         *             if ((next = (current = e).next) == null && (t = table) != null) {
         *                 do {} while (index < t.length && (next = t[index++]) == null);
         *             }
         *             return e;
         *         }
         */
        // 7.1 Node<K,V> e = next; 把当前存储着 Node 节点的 next 赋值给了 e
        // 7.2 (next = (current = e).next) == null
        // 判断当前节点的下一个节点是否为 null
        // a. 如果当前节点的下一个节点为 null
        // 就执行 do {} while (index < t.length && (next = t[index++]) == null);
        // 再 table 数组中 遍历,寻找 table 数组中的下一个 Node 并赋值给 next
        // b. 如果当前节点的下一个节点不为 null
        // 就将当前节点的下一个节点赋值给 next,并且此刻不会去 table 数组中遍历下一个 Node 节点
        // 7.3 将找到的节点 e 返回
        // 7.4 之后每次执行 iterator.next(),都像 a、b 那样去判断遍历,直到遍历完成
        Iterator iterator = hashSet.iterator();
        while (iterator.hasNext()) {
            Object next =  iterator.next();
            System.out.println(next);
        }
    }
}
Salin selepas log masuk

Atas ialah kandungan terperinci Bagaimana untuk menambah elemen traversal ke Java HashSet. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:yisu.com
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan