Rumah > Java > javaTutorial > Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java

Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java

WBOY
Lepaskan: 2023-04-29 20:49:05
ke hadapan
1516 orang telah melayarinya

Algoritma pengisihan ialah salah satu daripada algoritma paling asas dalam "Struktur Data dan Algoritma".

Algoritma pengisihan boleh dibahagikan kepada pengisihan dalaman dan pengisihan luaran adalah untuk mengisih rekod data dalam memori, manakala pengisihan luaran adalah kerana data yang diisih adalah sangat besar dan tidak dapat menampung semua rekod yang diisih pada satu masa. Semasa proses pengisihan Perlu mengakses memori luaran. Algoritma pengisihan dalaman yang biasa termasuk: isihan sisipan, isihan bukit, isihan pemilihan, isihan gelembung, isihan gabungan, isihan pantas, isihan timbunan, isihan radix, dsb. Ringkaskan dengan gambar:

Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java

Mengenai kerumitan masa:

  1. perintah segi empat sama (O(n2 )) Isih pelbagai jenis pengisihan mudah: sisipan langsung, pemilihan langsung dan isihan gelembung.

  2. Tertib logaritma linear (O(nlog2n)) mengisih cepat, isihan timbunan dan isihan gabung.

  3. Isih O(n1+§)), § macam bukit.

  4. Isih tertib linear (O(n)), isihan radix, selain isihan baldi dan tong sampah.

Mengenai kestabilan:

Algoritma isihan stabil: isihan gelembung, isihan sisipan, isihan gabung dan isihan radix.

Bukan algoritma pengisihan yang stabil: isihan pemilihan, isihan pantas, isihan bukit, isihan timbunan.

Penjelasan istilah:

n: skala data

k: bilangan "baldi"

Di tempat: diduduki Memori malar, tidak menduduki memori tambahan

Out-place: menduduki memori tambahan

Kestabilan: susunan 2 nilai kunci yang sama selepas mengisih adalah sama dengan susunan mereka sebelum mengisih

1. Isih Buih

Isih Buih juga merupakan algoritma pengisihan yang mudah dan intuitif. Ia berulang kali berjalan melalui urutan untuk diisih, membandingkan dua elemen pada satu masa dan menukarnya jika ia berada dalam susunan yang salah. Kerja melawat tatasusunan diulang sehingga tiada lagi pertukaran diperlukan, yang bermaksud tatasusunan telah diisih. Nama algoritma ini berasal dari fakta bahawa unsur-unsur yang lebih kecil perlahan-lahan akan "terapung" ke bahagian atas tatasusunan melalui pertukaran.

Sebagai salah satu algoritma pengisihan yang paling mudah, pengisihan gelembung memberi saya perasaan yang sama seperti Abandon muncul dalam buku perkataan setiap kali, jadi ia adalah yang paling biasa. Terdapat satu lagi algoritma pengoptimuman untuk pengisihan gelembung, iaitu menetapkan bendera Apabila unsur-unsur tidak ditukar semasa traversal jujukan, ia membuktikan bahawa jujukan adalah teratur. Tetapi peningkatan ini tidak banyak membantu meningkatkan prestasi.

1. Langkah-langkah algoritma

  1. Bandingkan elemen bersebelahan. Jika yang pertama lebih besar daripada yang kedua, tukar kedua-duanya.

  2. Lakukan perkara yang sama untuk setiap pasangan elemen bersebelahan, bermula dari pasangan pertama hingga pasangan terakhir di penghujung. Selepas langkah ini selesai, elemen *** akan menjadi nombor ***.

  3. Ulang langkah di atas untuk semua elemen kecuali *** satu.

  4. Teruskan mengulangi langkah di atas untuk semakin sedikit elemen setiap kali sehingga tiada pasangan nombor untuk dibandingkan.

2. Demonstrasi GIF

Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java

Bilakah masa terpantas

Apabila data input sudah berada dalam urutan positif (ia sudah berada dalam urutan positif, apa gunanya pengisihan gelembung?).

4. Bilakah masa yang paling perlahan?

Apabila data input dalam susunan terbalik (hanya tulis gelung for untuk mengeluarkan data dalam susunan terbalik, mengapa perlu Saya menggunakan awak? Bagaimana dengan jenis gelembung, adakah saya bebas?).

5. Pelaksanaan kod Java

public class BubbleSort implements IArraySort {      @Override     public int[] sort(int[] sourceArray) throws Exception {         // 对 arr 进行拷贝,不改变参数内容         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          for (int i = 1; i  arr[j + 1]) {                     int tmp = arr[j];                     arr[j] = arr[j + 1];                     arr[j + 1] = tmp;                      flag = false;                 }             }              if (flag) {                 break;             }         }         return arr;     } }
Salin selepas log masuk

2. tidak kira apa data yang dimasukkan, kerumitan masa ialah O(n²). Jadi apabila menggunakannya, lebih kecil saiz data, lebih baik. Satu-satunya kelebihan mungkin ia tidak menempati ruang memori tambahan.

1. Langkah-langkah algoritma

Mula-mula cari elemen terkecil (besar) dalam jujukan tidak diisih dan simpan pada kedudukan permulaan yang diisih jujukan
  1. Kemudian teruskan mencari unsur terkecil (besar) daripada unsur yang tidak diisih yang tinggal, dan kemudian letakkannya di penghujung jujukan yang diisih.
  2. Ulang langkah dua sehingga semua elemen diisih.
  3. 2. Demonstrasi GIF

Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java3 >
public class SelectionSort implements IArraySort {      @Override     public int[] sort(int[] sourceArray) throws Exception {         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          // 总共要经过 N-1 轮比较         for (int i = 0; i 
Salin selepas log masuk

3. Isih sisipan

Walaupun pelaksanaan kod isihan sisipan tidak semudah dan kasar seperti jenis gelembung dan jenis pemilihan, prinsipnya haruslah yang paling mudah difahami. , kerana sesiapa yang telah bermain poker seharusnya dapat memahaminya serta-merta. Isih sisipan ialah algoritma pengisihan yang paling mudah dan paling intuitif Ia berfungsi dengan membina urutan tersusun, ia mengimbas dari belakang ke hadapan dalam urutan yang diisih untuk mencari kedudukan yang sepadan dan memasukkannya.

Isih sisipan, seperti isihan gelembung, juga mempunyai algoritma pengoptimuman yang dipanggil sisipan belah separuh.

1. 算法步骤

  • 将***待排序序列***个元素看做一个有序序列,把第二个元素到***一个元素当成是未排序序列。

  • 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

2. 动图演示

Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java

3. Java 代码实现

public class InsertSort implements IArraySort {      @Override     public int[] sort(int[] sourceArray) throws Exception {         // 对 arr 进行拷贝,不改变参数内容         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的         for (int i = 1; i  0 && tmp <p><strong>四、希尔排序</strong></p><p>希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。</p><p>希尔排序是基于插入排序的以下两点性质而提出改进方法的:</p>
Salin selepas log masuk
  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率

  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

1. 算法步骤

  1. 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

  2. 按增量序列个数 k,对序列进行 k 趟排序;

  3. 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1  时,整个序列作为一个表来处理,表长度即为整个序列的长度。

2. Java 代码实现

public class ShellSort implements IArraySort {      @Override     public int[] sort(int[] sourceArray) throws Exception {         // 对 arr 进行拷贝,不改变参数内容         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          int gap = 1;         while (gap  0) {             for (int i = gap; i = 0 && arr[j] > tmp) {                     arr[j + gap] = arr[j];                     j -= gap;                 }                 arr[j + gap] = tmp;             }             gap = (int) Math.floor(gap / 3);         }          return arr;     } }
Salin selepas log masuk

五、归并排序

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and  Conquer)的一个非常典型的应用。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

  • 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法)

  • 自下而上的迭代

在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:

However, it is not possible to do so in JavaScript, as the recursion goes too  deep for the language to handle.

然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。

说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。

1. 算法步骤

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

  4. 重复步骤 3 直到某一指针达到序列尾;

  5. 将另一序列剩下的所有元素直接复制到合并序列尾。

2. 动图演示

Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java

3. Java 代码实现

public class MergeSort implements IArraySort {      @Override     public int[] sort(int[] sourceArray) throws Exception {         // 对 arr 进行拷贝,不改变参数内容         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          if (arr.length  0 && right.length > 0) {             if (left[0]  0) {             result[i++] = left[0];             left = Arrays.copyOfRange(left, 1, left.length);         }          while (right.length > 0) {             result[i++] = right[0];             right = Arrays.copyOfRange(right, 1, right.length);         }          return result;     }  }
Salin selepas log masuk

六、快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2)  次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner  loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case  的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn)  的排序算法表现要更好,可是这是为什么呢,我也不知道。

快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn)  记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

1. 算法步骤

  1. 从数列中挑出一个元素,称为 “基准”(pivot);

  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

递归的***部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它***的位置去。

2. 动图演示

Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java

3. Java 代码实现

public class QuickSort implements IArraySort {      @Override     public int[] sort(int[] sourceArray) throws Exception {         // 对 arr 进行拷贝,不改变参数内容         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          return quickSort(arr, 0, arr.length - 1);     }      private int[] quickSort(int[] arr, int left, int right) {         if (left <p><strong>七、堆排序</strong></p><p>堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:</p><ol class=" list-paddingleft-2">
<li><p>鸿蒙官方战略合作共建——HarmonyOS技术社区</p></li>
<li><p>大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;</p></li>
<li><p>小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;</p></li>
</ol><p>堆排序的平均时间复杂度为 Ο(nlogn)。</p><p><strong>1. 算法步骤</strong></p><ol class=" list-paddingleft-2">
<li><p>鸿蒙官方战略合作共建——HarmonyOS技术社区</p></li>
<li><p>创建一个堆 H[0……n-1];</p></li>
<li><p>把堆首(***值)和堆尾互换;</p></li>
<li><p>把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;</p></li>
<li><p>重复步骤 2,直到堆的尺寸为 1。</p></li>
</ol><p><strong>2. 动图演示</strong></p><center><img src="https://img.php.cn/upload/article/000/887/227/168277254995371.gif" alt="Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java"></center><p><strong>3. Java 代码实现</strong></p><pre class="brush:php;toolbar:false">public class HeapSort implements IArraySort {      @Override     public int[] sort(int[] sourceArray) throws Exception {         // 对 arr 进行拷贝,不改变参数内容         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          int len = arr.length;          buildMaxHeap(arr, len);          for (int i = len - 1; i > 0; i--) {             swap(arr, 0, i);             len--;             heapify(arr, 0, len);         }         return arr;     }      private void buildMaxHeap(int[] arr, int len) {         for (int i = (int) Math.floor(len / 2); i >= 0; i--) {             heapify(arr, i, len);         }     }      private void heapify(int[] arr, int i, int len) {         int left = 2 * i + 1;         int right = 2 * i + 2;         int largest = i;          if (left  arr[largest]) {             largest = left;         }          if (right  arr[largest]) {             largest = right;         }          if (largest != i) {             swap(arr, i, largest);             heapify(arr, largest, len);         }     }      private void swap(int[] arr, int i, int j) {         int temp = arr[i];         arr[i] = arr[j];         arr[j] = temp;     }  }
Salin selepas log masuk

八、计数排序

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

1. 动图演示

Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java

2. Java 代码实现

public class CountingSort implements IArraySort {      @Override     public int[] sort(int[] sourceArray) throws Exception {         // 对 arr 进行拷贝,不改变参数内容         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          int maxValue = getMaxValue(arr);          return countingSort(arr, maxValue);     }      private int[] countingSort(int[] arr, int maxValue) {         int bucketLen = maxValue + 1;         int[] bucket = new int[bucketLen];          for (int value : arr) {             bucket[value]++;         }          int sortedIndex = 0;         for (int j = 0; j  0) {                 arr[sortedIndex++] = j;                 bucket[j]--;             }         }         return arr;     }      private int getMaxValue(int[] arr) {         int maxValue = arr[0];         for (int value : arr) {             if (maxValue <p><strong>九、桶排序</strong></p><p>桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:</p>
Salin selepas log masuk
  • 在额外空间充足的情况下,尽量增大桶的数量

  • 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

1. 什么时候最快

当输入的数据可以均匀的分配到每一个桶中。

2. 什么时候最慢

当输入的数据被分配到了同一个桶中。

3. Java 代码实现

public class BucketSort implements IArraySort {      private static final InsertSort insertSort = new InsertSort();      @Override     public int[] sort(int[] sourceArray) throws Exception {         // 对 arr 进行拷贝,不改变参数内容         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          return bucketSort(arr, 5);     }      private int[] bucketSort(int[] arr, int bucketSize) throws Exception {         if (arr.length == 0) {             return arr;         }          int minValue = arr[0];         int maxValue = arr[0];         for (int value : arr) {             if (value  maxValue) {                 maxValue = value;             }         }          int bucketCount = (int) Math.floor((maxValue - minValue) / bucketSize) + 1;         int[][] buckets = new int[bucketCount][0];          // 利用映射函数将数据分配到各个桶中         for (int i = 0; i <p><strong>十、基数排序</strong></p><p>基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。</p><p><strong>1. 基数排序 vs 计数排序 vs 桶排序</strong></p><p>基数排序有两种方法:</p><p>这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:</p>
Salin selepas log masuk
  • 基数排序:根据键值的每位数字来分配桶;

  • 计数排序:每个桶只存储单一键值;

  • 桶排序:每个桶存储一定范围的数值;

2. LSD 基数排序动图演示

Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java

3. Java 代码实现

/**  * 基数排序  */ public class RadixSort implements IArraySort {      @Override     public int[] sort(int[] sourceArray) throws Exception {         // 对 arr 进行拷贝,不改变参数内容         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);          int maxDigit = getMaxDigit(arr);         return radixSort(arr, maxDigit);     }      /**      * 获取***位数      */     private int getMaxDigit(int[] arr) {         int maxValue = getMaxValue(arr);         return getNumLenght(maxValue);     }      private int getMaxValue(int[] arr) {         int maxValue = arr[0];         for (int value : arr) {             if (maxValue 
Salin selepas log masuk

Atas ialah kandungan terperinci Bagaimana untuk menggunakan algoritma pengisihan klasik dalam kod java. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:yisu.com
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan