MySQL 调优基础(四) Linux 磁盘IO_MySQL
1. IO处理过程
磁盘IO经常会成为系统的一个瓶颈,特别是对于运行数据库的系统而言。数据从磁盘读取到内存,在到CPU缓存和寄存器,然后进行处理,最后写回磁盘,中间要经过很多的过程,下图是一个以write为例的 Linux 磁盘IO子系统的架构:
可以看到IO操作分成了四个层面:
1)文件系统缓存:处理数据必须先从磁盘读到缓存,然后修改,然后刷会磁盘。缓存的刷新涉及到两个参数:vm.dirty_background_ratio、vm.dirty_ratio。还有刷新写回时,使用到 bio 结构,bio的组成是由磁盘上相邻的block组成的,所以这里进行了优化。
2)block layer:该层就涉及到 IO调度算法,IO调度算法在mysql服务器是一个很重要的调优手段。系统中所有进程申请的IO操作,全部在这里进行排队,等待调度,然后写回磁盘。调度算法有四种:
1> Anticipatory: 适用于个人PC,单磁盘系统;
2> CFQ(Complete Fair Queuing):默认的IO调度算法,完全公平的排队调度算法。每一个进程的IO请求会安排进一个专门的IO队列,然后按照进程组来公平的调度IO,也就是每一个进程组之间按照公平的方式来调度IO。显然他适合多用户的系统,但是极为不适合作为数据库系统的IO调度算法,因为显而易见,数据库系统中,数据库进程肯定是IO最多的一个进程组,然后它却只能获得和其它进程一样多的IO调度机会。所以显然这是极为不合理的。数据库系统绝对不要使用该调度算法。
3> Deadline: 按照截止期限来循环在各个IO队列中进行调度,所以它提供了一个近实时的IO系统,并且磁盘throughput也很好,也不会造成starvation.一般mysql系统建议采用该调度算法。
4> NOOP: 简单的FIFO队列进行调度,No operation的意思是,它没有进行额外的将临近的IO进行合并的操作,所以它对CPU的使用极少。该调度算法特别适合于SSD。因为SSD在对待顺序IO和随机IO没有什么区别。所以它不需要对临近的IO进行合并。避免了合并操作对CPU的使用。
所以一般而言,对于mysql的系统,如果是SSD,那么应该使用NOOP调度算法,如果是磁盘,就应该使用Deadline调度算法。
查看与修改IO调度算法:
临时修改:
[root@localhost ~]# cat /sys/block/sda/queue/scheduler
noop anticipatory deadline [cfq]
[root@localhost ~]# echo noop > /sys/block/sda/queue/scheduler
[root@localhost ~]# cat /sys/block/sda/queue/scheduler
[noop] anticipatory deadline cfq
永久修改:
# vi /boot/grub/menu.lst
更改到如下内容:
kernel /boot/vmlinuz-2.6.18-8.el5 ro root=LABEL=/ elevator=deadline rhgb quiet
重启之后,查看调度方法:
# cat /sys/block/sda/queue/scheduler
noop anticipatory [deadline] cfq
已经是deadline了
3)磁盘驱动层:对于顺序读系统而言,很容易在磁盘接口层的带宽上成为瓶颈所在;
4)磁盘:对于随机读多的系统而言,磁盘很容易成为瓶颈所在,一般的优化就是使用RAID或者换SSD;
2. IO瓶颈检测
2.1 使用 iostat 查看磁盘IO
显示单位问题:默认iostat是以磁盘的block为单位,也可以使用 -k 来指定以 kilobytes 为单位,或者使用 -m 指定 megabytes 为单位;
统计开始时间问题:默认iostat和vmstat相似,默认第一次/行都是从开机到目前的一个数据,可以使用 -y 选项去掉第一次/行的数据;
CPU与磁盘: iostat 默认会显示cpu和磁盘的数据,如果只要cpu数据可以使用 -c 选项,如果只需要磁盘数据,可以使用 -d 选项;
时间间隔和重复次数:[interval [times]] 表示磁盘统计数据的间隔时间和次数;
-x : 该选项显示具体的扩展信息;
[root@localhost ~]# iostat Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) avg-cpu: %user %nice %system %iowait %steal %idle 0.60 0.00 7.80 0.31 0.00 91.30 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn scd0 0.02 0.21 0.00 536 0 sda 2.00 78.60 8.43 198702 21312[root@localhost ~]# iostat -c Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) avg-cpu: %user %nice %system %iowait %steal %idle 0.48 0.00 6.51 0.25 0.00 92.76 [root@localhost ~]# iostat -d -k Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn scd0 0.02 0.08 0.00 268 0 sda 1.69 31.17 4.15 99363 13224 [root@localhost ~]# iostat -d -m Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) Device: tps MB_read/s MB_wrtn/s MB_read MB_wrtn scd0 0.02 0.00 0.00 0 0 sda 1.69 0.03 0.00 97 12 [root@localhost ~]# iostat -d -m -x Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util scd0 0.02 0.00 0.02 0.00 0.00 0.00 10.94 0.00 4.96 4.88 0.01 sda 1.22 0.48 1.13 0.56 0.03 0.00 41.66 0.01 6.83 5.27 0.89 [root@localhost ~]# iostat -d -m -x 2 3 Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util scd0 0.02 0.00 0.01 0.00 0.00 0.00 10.94 0.00 4.96 4.88 0.01 sda 1.19 0.48 1.10 0.55 0.03 0.00 41.52 0.01 6.81 5.25 0.87 Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda 0.00 0.00 0.00 0.51 0.00 0.00 8.00 0.00 3.00 3.00 0.15 [root@localhost ~]# iostat -y -d -m -x 2 3 Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
字段含义:
Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn 分别表示:每秒读取block的个数,每秒写block的个数,总共读了多少个block,总共写了多少个block
tps: Indicate the number of transfers per second that were issued to the device. A transfer is an I/O request to the device. Multiple logical requests can be combined into a single I/O request to the device. A transfer is of indeterminate size.(就是对磁盘每秒请求多少次IO操作)
rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util
rrqm/s wrqm/s 表示的磁盘读和写时每秒发生多少次相邻磁盘的merge操作;rrqm: read request merge; wrqm:write request merge
r/s w/s 表示每秒读的次数,写的次数;
rMB/s wMB/s 表示每秒读多少MB,写多少MB
avgrq-sz:The average size (in sectors) of the requests that were issued to the device. 平均一个IO请求涉及到多少个sector
avgqu-sz:The average queue length of the requests that were issued to the device. IO队列的平均长度,该数值很重要。
await:The average time (in milliseconds) for I/O requests issued to the device to be served. This includes the time spent by the requests in queue and the time spent servicing them.平均每一个IO花费了多少毫秒(包括在IO队列中的排队时间和读写操作花费的时间)。这里可以理解为IO的响应时间,一般地系统IO响应时间应该低于5ms,如果大于10ms就比较大了。
svctm:弃用
%util :Percentage of CPU time during which I/O requests were issued to the device (bandwidth utilization for the device). Device saturation occurs when this value is close to 100%. 在统计时间内所有处理IO时间,除以总共统计时间。例如,如果统计间隔1秒,该设备有0.8秒在处理IO,而0.2秒闲置,那么该设备 的%util = 0.8/1 = 80%,所以该参数暗示了设备的繁忙程度。一般地,如果该参数是100%表示设备已经接近满负荷运行了(当然如果是多磁盘,即使%util是100%,因 为磁盘的并发能力,所以磁盘使用未必就到了瓶颈)。
CPU的 %iowait io等待很高;
磁盘的 avgqu-sz数值很大;await数值很高;%util数值很高;都可能预示着磁盘存在瓶颈或者磁盘出现问题或者故障。
2.2 使用 iostat 查看磁盘每个分区的IO
上面查看的都是整个磁盘的IO情况,下面的命令可以查看具体某个磁盘的所有分区的IO情况:
[root@localhost ~]# iostat -x -d -m -p sda 2 3 Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util sda 0.82 0.43 0.76 0.52 0.02 0.00 38.49 0.01 6.27 4.82 0.62 sda1 0.80 0.42 0.53 0.51 0.02 0.00 45.09 0.01 6.92 5.50 0.57 sda2 0.01 0.02 0.12 0.01 0.00 0.00 9.70 0.00 2.95 2.79 0.04 sda3 0.01 0.00 0.07 0.00 0.00 0.00 8.67 0.00 3.72 3.65 0.03 Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util sda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util sda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 [root@localhost ~]# iostat -d -m -p sda 2 3 Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) Device: tps MB_read/s MB_wrtn/s MB_read MB_wrtn sda 1.25 0.02 0.00 97 18 sda1 1.02 0.02 0.00 92 17 sda2 0.13 0.00 0.00 2 0 sda3 0.07 0.00 0.00 1 0 Device: tps MB_read/s MB_wrtn/s MB_read MB_wrtn sda 0.00 0.00 0.00 0 0 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0 Device: tps MB_read/s MB_wrtn/s MB_read MB_wrtn sda 0.00 0.00 0.00 0 0 sda1 0.00 0.00 0.00 0 0 sda2 0.00 0.00 0.00 0 0 sda3 0.00 0.00 0.00 0 0
2.3 使用 vmstat 查看磁盘IO
[root@localhost ~]# vmstat 2 4 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 0 454900 21808 76776 0 0 20 4 97 81 0 5 95 0 0 0 0 0 454892 21808 76772 0 0 0 8 83 106 0 3 97 0 0 1 0 0 454760 21816 76772 0 0 0 44 101 153 1 5 94 0 0 0 0 0 454760 21816 76784 0 0 0 0 57 68 0 1 99 0 0
bi: Blocks received from a block device (blocks/s). 每秒读取多少个block到内存
bo: Blocks sent to a block device (blocks/s). 每秒内存写出多少个block到磁盘
2.4 使用 sar -b 查看磁盘IO
[root@localhost ~]# sar -b 2 4 Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/09/2015 _i686_ (1 CPU) 03:53:21 PM tps rtps wtps bread/s bwrtn/s 03:53:23 PM 0.00 0.00 0.00 0.00 0.00 03:53:25 PM 0.00 0.00 0.00 0.00 0.00 03:53:27 PM 0.00 0.00 0.00 0.00 0.00 03:53:29 PM 0.00 0.00 0.00 0.00 0.00 Average: 0.00 0.00 0.00 0.00 0.00
tps: 上面有介绍;rtps: 表示读的tps;wtps: 表示写的tps;
bread/s: 每秒读多少个block;bwrtn/s: 每秒写多少个block;
2.5 使用 iotop 找到IO最多的进程/线程
iotop类似于top命令,默认按照IO排序:
iotop :
iotop 是可以交互的:
Use the left and right arrows to change the sorting, r to reverse the sorting order, o to toggle the --only
option, p to toggle the --processes option, a to toggle the --accumulated option, q to quit or i to change the
priority of a thread or a process’ thread(s). Any other key will force a refresh.
1)利用左右键 可以选择排序的字段,默认按照IO>倒序,可以按照SWAPIN,DISK WRITE 等等字段排序,使用左右方向键即可;
2)利用 p键 可以在按照 进程显示 和按照 线程显示之间切换;
3)r 键可以改变排序的方向:倒序 和 顺序
查看mysqld的IO:
iotop -k -u mysql (-k 表示KB,-u mysql表示显示mysql用户的所有进程的IO):
3. 实例分析
$iostat -d -k 1 |grep sda10 Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn sda10 60.72 18.95 71.53 395637647 1493241908 sda10 299.02 4266.67 129.41 4352 132 sda10 483.84 4589.90 4117.17 4544 4076 sda10 218.00 3360.00 100.00 3360 100 sda10 546.00 8784.00 124.00 8784 124 sda10 827.00 13232.00 136.00 13232 136
上面看到,磁盘每秒传输次数平均约400;每秒磁盘读取约5MB,写入约1MB。
iostat -d -x -k 1
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
sda 1.56 28.31 7.84 31.50 43.65 3.16 21.82 1.58 1.19 0.03 0.80 2.61 10.29
sda 1.98 24.75 419.80 6.93 13465.35 253.47 6732.67 126.73 32.15 2.00 4.70 2.00 85.25
sda 3.06 41.84 444.90 54.08 14204.08 2048.98 7102.04 1024.49 32.57 2.10 4.21 1.85 92.24
可以看到磁盘的平均响应时间80。磁盘响应正常,但是已经很繁忙了。
4. 磁盘IO优化
磁盘IO在优化之前,首先要弄清楚系统的IO情况,是随机IO多,还是顺序IO多,是大文件IO多,还是小文件IO多(小文件IO一般也就是随机IO)。比如随机IO多,那么就可以通过加磁盘使用RAID技术来优化,如果是顺序IO遇到瓶颈,一般可能是磁盘驱动的带宽有瓶颈,就可以换一个更快的disk controller。搞清楚是磁盘有瓶颈,还是磁盘驱动的带宽有瓶颈。
因为磁盘IO的操作分成了4个层面,所以IO的优化也可以从这四个方面入手:
1)正对mysql系统的调优,还需要选择正确的IO调度算法,如果是SSD,选择NOOP调度算法,如果是磁盘,那么选择deadline调度算法;
2)针对mysql还显然可以通过maser-slave来读写分离进行磁盘IO优化。
3)另外增大内存,可以对更多的磁盘文件进行缓存,也能减轻IO压力。
4)还有文件系统的挂载选项 noatime, nodiratime也能减轻IO压力,另外选择正确的文件系统也能提高磁盘的tps. mysql数据库推荐使用XFS文件系统。
注:上面显示的磁盘IO的数据,很多都是0,这是因为数据来自于虚拟机中的Linux系统。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Windows 11 mempunyai keperluan yang ketat, dan selepas bergelut untuk mendapatkan storan itu, kehilangan cakera keras dan data anda akan memalukan. Nah, kami mempunyai berita baik yang boleh membantu anda menampan terhadap kegagalan cakera keras. Menggunakan alat Windows terbina dalam, anda boleh menyalin semua data anda dari satu pemacu ke pemacu yang lain. Dengan cara ini, jika satu pemacu gagal, anda boleh mencerminkan dan membina semula data asal pada pemacu gantian. Bolehkah Windows 11 melakukan RAID? Dengan ciri Windows Storage Spaces, anda boleh melakukan RAID pada Windows 11. Ciri ini membolehkan anda mencipta berbilang cakera maya menggunakan cakera keras yang disambungkan terus ke komputer anda tanpa merendahkan prestasi. Faedah Raid: Mengurangkan kos cakera

Apabila mencipta mesin maya, anda akan diminta untuk memilih jenis cakera, anda boleh memilih cakera tetap atau cakera dinamik. Bagaimana jika anda memilih cakera tetap dan kemudian menyedari bahawa anda memerlukan cakera dinamik, atau sebaliknya. Anda boleh menukar satu kepada yang lain? Dalam siaran ini, kita akan melihat cara menukar cakera tetap VirtualBox kepada cakera dinamik dan sebaliknya. Cakera dinamik ialah cakera keras maya yang pada mulanya mempunyai saiz kecil dan membesar dalam saiz semasa anda menyimpan data dalam mesin maya. Cakera dinamik sangat cekap dalam menjimatkan ruang storan kerana ia hanya mengambil sebanyak mungkin ruang storan hos seperti yang diperlukan. Walau bagaimanapun, apabila kapasiti cakera berkembang, prestasi komputer anda mungkin terjejas sedikit. Cakera tetap dan cakera dinamik biasanya digunakan dalam mesin maya

RAID atau Redundant Array of Independent Disks ialah teknologi penyimpanan data di mana berbilang pemacu luaran digabungkan menjadi satu. Ia digunakan secara meluas apabila pemacu keras besar mahal, tetapi ramai orang masih lebih suka kaedah pemacu luaran RAID. Terdapat beberapa peringkat RAID, setiap satu mempunyai tujuan tertentu. Perlu diingat bahawa pengguna biasa tidak perlu menyelidiki kerumitan, persediaan mudah RAID0 atau RAID1 harus berfungsi dengan baik. Sebab untuk mempertimbangkan untuk menyerbu pemacu luaran: Prestasi PC yang dipertingkatkan Mudah dikonfigurasikan, lebih murah daripada alternatif sedia ada Membaca dan menulis data yang lebih pantas Penyelesaian sandaran yang cekap melalui pencerminan Bagaimana untuk menyerbu pemacu luaran pada Windows 11? Sebelum RAID cakera keras luaran, anda perlu memberi perhatian kepada perkara pertama berikut

Jika anda ingin menukar cakera dinamik kepada cakera asas dalam Windows 11, anda harus membuat sandaran terlebih dahulu kerana proses itu akan memadamkan semua data di dalamnya. Mengapa anda perlu menukar cakera dinamik kepada cakera asas dalam Windows 11? Menurut Microsoft, cakera dinamik telah ditamatkan dari Windows dan penggunaannya tidak lagi disyorkan. Selain itu, Windows Home Edition tidak menyokong cakera dinamik, jadi anda tidak akan dapat mengakses pemacu logik ini. Jika anda ingin menggabungkan lebih banyak cakera kepada volum yang lebih besar, kami mengesyorkan anda menggunakan Cakera Asas atau Ruang Storan. Dalam artikel ini, kami akan menunjukkan kepada anda cara menukar cakera dinamik kepada cakera asas pada Windows 11 Bagaimana untuk menukar cakera dinamik kepada cakera asas dalam Windows 11? pada permulaannya

Kami ingin menyemak penggunaan cakera keras dalam sistem Bagaimana untuk menyemaknya dalam sistem Ubuntu? Mari kita lihat tutorial tentang menyemak penggunaan cakera keras dalam sistem Ubuntu. 1. Pada sistem, klik pada sudut kiri bawah desktop, seperti yang ditunjukkan dalam gambar. 2. Dalam sistem, klik Utiliti, seperti yang ditunjukkan dalam rajah. 3. Klik Penggunaan Cakera, seperti yang ditunjukkan dalam gambar. 4. Kemudian anda boleh melihat penggunaan cakera, iaitu cakera di tengah adalah cakera keras komputer anda, seperti yang ditunjukkan dalam gambar. Cetakan kecil di bawah cakera menunjukkan penggunaan. 5. Atau klik cakera pada program utiliti, seperti yang ditunjukkan dalam gambar. 6. Kemudian di bawah kapasiti, anda boleh melihat penggunaan cakera keras, seperti yang ditunjukkan dalam gambar. Berikut ialah versi teks untuk melihat penggunaan cakera: df-h Hasilnya adalah seperti berikut: FilesystemSizeUsedAvailU

Kegagalan pemacu ialah isu serius yang boleh menyebabkan fail anda tidak dapat dipulihkan atau pemacu but anda tidak berfungsi, jadi itulah sebabnya ramai pengguna memilih untuk mencipta volum bercermin pada Windows 11 sebagai cara untuk mengelakkan perkara ini. Jika anda tidak biasa, volum bercermin ialah salinan tepat pemacu lain yang boleh digunakan sebagai sandaran sekiranya berlaku kegagalan cakera. Ia merupakan penyelesaian sandaran yang hebat, dan hari ini kami akan menunjukkan kepada anda cara untuk menciptanya pada PC anda. Apakah prasyarat untuk menyediakan volum bercermin? Dua cakera dinamik saiz yang sama. Pemacu cermin boleh lebih besar daripada pemacu sumber. Sokongan RAID tersedia pada hampir setiap PC moden. Pemacu cermin hendaklah tidak diperuntukkan dan tidak mempunyai sebarang volum. Bagaimana untuk membuat kelantangan cermin dalam Windows 11? 1.Gunakan
![Bagaimana untuk meningkatkan saiz cakera dalam VirtualBox [Panduan]](https://img.php.cn/upload/article/000/887/227/171064142025068.jpg?x-oss-process=image/resize,m_fill,h_207,w_330)
Kami sering menghadapi situasi di mana saiz cakera yang telah ditetapkan tidak mempunyai ruang untuk lebih banyak data? Jika anda memerlukan lebih banyak ruang cakera keras mesin maya pada peringkat seterusnya, anda mesti mengembangkan cakera keras maya dan sekatan. Dalam siaran ini, kita akan melihat bagaimana untuk meningkatkan saiz cakera dalam VirtualBox. Meningkatkan saiz cakera dalam VirtualBox Adalah penting untuk ambil perhatian bahawa anda mungkin ingin menyandarkan fail cakera keras maya anda sebelum melakukan operasi ini, kerana sentiasa ada kemungkinan berlaku masalah. Ia sentiasa menjadi amalan yang baik untuk mempunyai sandaran. Walau bagaimanapun, proses ini biasanya berfungsi dengan baik, cuma pastikan untuk mematikan mesin anda sebelum meneruskan. Terdapat dua cara untuk meningkatkan saiz cakera dalam VirtualBox. Kembangkan saiz cakera VirtualBox menggunakan GUI menggunakan CL

Di manakah saya boleh menyemak pembersihan cakera dalam win11? Memandangkan sistem ini digunakan untuk masa yang lama, selalunya terdapat lebih daripada sepuluh gigabait atau lebih banyak fail sampah yang tidak berguna dalam pemacu c atau cakera komputer lain. Pada masa ini, menggunakan fungsi pembersihan cakera yang disertakan dengan win11 boleh membantu kami membersihkan fail yang tidak berguna ini dengan cepat. Walau bagaimanapun, ramai pengguna tidak tahu di mana fungsi pembersihan cakera win11 dan cara mengendalikannya. Hari ini, editor akan membawakan anda langkah-langkah untuk menyemak fungsi pembersihan sampah yang disertakan dengan Win11, dan izinkan saya menerangkannya kepada anda. Langkah-langkah untuk menyemak fungsi pembersihan sampah terbina dalam win11 1. Mula-mula, tekan kekunci [Win] pada papan kekunci, atau klik [Start Menu] pada bar tugas, dan kemudian pilih [Settings] di bawah aplikasi yang disematkan; : Sistem >storan,
