Jadual Kandungan
1 pemasangan openai
2 api_requestor.py menggantikan
3 Arahan panggilan antara muka
4 mesej
5 Contoh program
Rumah pembangunan bahagian belakang Tutorial Python Bagaimana untuk memanggil antara muka GPT3.5 dalam Python

Bagaimana untuk memanggil antara muka GPT3.5 dalam Python

May 02, 2023 pm 06:25 PM
python gpt

Kaedah panggilan antara muka GPT3.5 terutamanya merangkumi empat bahagian: pemasangan openai, penggantian api_requestor.py, panggilan antara muka dan contoh penerangan program.

1 pemasangan openai

Pustaka openai Python boleh dipasang terus melalui pip install openai. Jika openai telah dipasang, tetapi gesaan berikutnya menunjukkan bahawa ChatCompletion tidak dapat ditemui, sila gunakan arahan "pip install -U openai" untuk menaik taraf openai.

2 api_requestor.py menggantikan

Selepas Python openai dipasang, fail api_requestor.py akan dijanakan dalam direktori fail perpustakaan persekitaran python "site-packagesopenaiapi_requestor.py" , seperti yang ditunjukkan di bawah. Gantikan fail dan balas api35 pada akaun awam Lele Sensing School untuk mendapatkan fail untuk penggantian.

Windows:
C:ProgramDataAnaconda3Libsite-packagesopenaiapi_requestor.py
atau
C:ProgramDataAnaconda3envsxxxlibsite-packagesopenaiapi_requestor.py
🎜/miniux
🎜 pythonxx/site-packages/openaiapi_requestor.py
atau
/root/miniconda3/envs/xxx/lib/pythonxx/site-packages/openaiapi_requestor.py
Ganti fail ini dalam akaun awam Lele Reply api35 in Sekolah Persepsi untuk mendapatkan fail untuk penggantian.

3 Arahan panggilan antara muka

Kaedah panggilan antara muka kekal tidak berubah dan konsisten dengan kaedah panggilan openai sendiri. Terdapat terutamanya 7 parameter dalam input.

(1) model: nama model, gpt-3.5-turbo atau gpt-3.5-turbo-0301

(2) mesej: soalan atau kandungan yang perlu dilengkapkan, yang diserlahkan di bawah.

(3) Suhu: Mengawal rawak keputusan 0.0 bermakna keputusan tetap Jika rawak tinggi, ia boleh ditetapkan kepada 0.9.

(4) max_tokens: Bilangan maksimum perkataan yang dikembalikan (termasuk soalan dan jawapan Biasanya aksara Cina merangkumi dua token). Andaikan ia ditetapkan kepada 100. Jika terdapat 40 aksara Cina dalam soalan segera, maka hasil yang dikembalikan akan termasuk sehingga 10 aksara Cina. Bilangan maksimum token yang dibenarkan oleh ChatGPT API ialah 4096, iaitu tetapan maksimum max_tokens ialah 4096 tolak bilangan token dalam soalan.

(5) top_p: Tetapkan kepada 1.

(6) frequency_penalty: Hanya tetapkan kepada 0.

(7) Presence_penalty: Hanya tetapkan kepada 0.

(8) strim: Kawal output berterusan atau output lengkap.

Perlu diingat bahawa parameter input di atas menambah strim, iaitu, sama ada untuk menggunakan kaedah aliran kawalan untuk mengeluarkan.

Jika nilai strim adalah Palsu, maka semua hasil teks akan dikembalikan sepenuhnya, yang boleh dibaca melalui response.choices[0].delta['content']. Walau bagaimanapun, lebih banyak bilangan perkataan, lebih lama masa menunggu untuk pemulangan Masa boleh merujuk kepada 4 perkataan/saat apabila membaca aliran kawalan. Jika nilai stim adalah Benar, hasil yang dikembalikan ialah penjana Python, dan hasilnya perlu diperolehi melalui lelaran Purata adalah kira-kira 4 perkataan sesaat (134 perkataan dalam 33 saat, 157 perkataan dalam 39 saat). Program membaca adalah seperti berikut.

4 mesej

Medan mesej terdiri daripada dua bahagian: peranan dan kandungan, seperti yang ditunjukkan di bawah:

  model="gpt-3.5-turbo",
  messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who won the world series in 2020?"},
        {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
        {"role": "user", "content": "Where was it played?"}
    ]
Salin selepas log masuk

Dalam gpt- Dalam 3.5 -model turbo, peranan termasuk tiga jenis: sistem, pembantu dan pengguna. Peranan Sistem adalah setara dengan memberitahu ChatGPT peranan yang hendak digunakan untuk menjawab soalan Anda perlu menentukan peranan dan kandungan soalan tertentu dalam kandungan. Perbezaan utama gpt-3.5-turbo-0301 ialah ia memberi lebih perhatian kepada kandungan masalah dan tidak memberi perhatian khusus kepada bahagian peranan tertentu. Model gpt-3.5-turbo-0301 sah sehingga 1 Jun dan gpt-3.5-turbo akan terus dikemas kini.

Penolong pembantu dan pengguna pengguna adalah setara dengan menentukan peranan dan kandungan boleh ditulis terus ke dalam isu yang menjadi perhatian.

5 Contoh program

(1) strim = Palsu

import openai
 
def openai_reply(content, apikey):
    openai.api_key = apikey
    response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo-0301",#gpt-3.5-turbo-0301
    messages=[
    {"role": "user", "content": content}
    ],
    temperature=0.5,
    max_tokens=1000,
    top_p=1,
    frequency_penalty=0,
    presence_penalty=0,
    )
    # print(response)
    return response.choices[0].message.content
 
 
if __name__ == '__main__':
    content = '你是谁?'
    ans = openai_reply(content, '你的APIKEY')
    print(ans)
Salin selepas log masuk

(2) strim = Benar

import time
import openai
 
openai.api_key = "你的APIKEY"
response = openai.ChatCompletion.create(
  model="gpt-3.5-turbo",
  messages=[
    {"role": "user", "content": 'how are you'}
    ],
  temperature=0,
  max_tokens=1000,
  stream=True,
  top_p=1,
  frequency_penalty=0,
  presence_penalty=0,
  user='RdFast智能创作机器人小程序'
)
 
print(response)
print('response["choices"][0]["text"]结果如下所示:')
ans = ''
for r in response:
    if 'content' in r.choices[0].delta:
      ans += r.choices[0].delta['content']
      print(ans)
 
print(ans)
Salin selepas log masuk

3 kesan panggilan API

Bagaimana untuk memanggil antara muka GPT3.5 dalam Python

Atas ialah kandungan terperinci Bagaimana untuk memanggil antara muka GPT3.5 dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Hadidb: Pangkalan data yang ringan dan berskala mendatar di Python Hadidb: Pangkalan data yang ringan dan berskala mendatar di Python Apr 08, 2025 pm 06:12 PM

Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

Kaedah Navicat untuk melihat kata laluan pangkalan data MongoDB Kaedah Navicat untuk melihat kata laluan pangkalan data MongoDB Apr 08, 2025 pm 09:39 PM

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Bagaimana untuk mengoptimumkan prestasi MySQL untuk aplikasi beban tinggi? Bagaimana untuk mengoptimumkan prestasi MySQL untuk aplikasi beban tinggi? Apr 08, 2025 pm 06:03 PM

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Cara Menggunakan AWS Glue Crawler dengan Amazon Athena Cara Menggunakan AWS Glue Crawler dengan Amazon Athena Apr 09, 2025 pm 03:09 PM

Sebagai profesional data, anda perlu memproses sejumlah besar data dari pelbagai sumber. Ini boleh menimbulkan cabaran kepada pengurusan data dan analisis. Nasib baik, dua perkhidmatan AWS dapat membantu: AWS Glue dan Amazon Athena.

Cara memulakan pelayan dengan redis Cara memulakan pelayan dengan redis Apr 10, 2025 pm 08:12 PM

Langkah -langkah untuk memulakan pelayan Redis termasuk: Pasang Redis mengikut sistem operasi. Mulakan perkhidmatan Redis melalui Redis-server (Linux/macOS) atau redis-server.exe (Windows). Gunakan redis-cli ping (linux/macOS) atau redis-cli.exe ping (windows) perintah untuk memeriksa status perkhidmatan. Gunakan klien Redis, seperti redis-cli, python, atau node.js untuk mengakses pelayan.

Bolehkah mysql menyambung ke pelayan SQL Bolehkah mysql menyambung ke pelayan SQL Apr 08, 2025 pm 05:54 PM

Tidak, MySQL tidak dapat menyambung terus ke SQL Server. Tetapi anda boleh menggunakan kaedah berikut untuk melaksanakan interaksi data: Gunakan middleware: data eksport dari MySQL ke format pertengahan, dan kemudian mengimportnya ke SQL Server melalui middleware. Menggunakan Pangkalan Data Pangkalan Data: Alat perniagaan menyediakan antara muka yang lebih mesra dan ciri -ciri canggih, pada dasarnya masih dilaksanakan melalui middleware.

See all articles