


Apakah perkara menarik yang boleh dilakukan dengan sepuluh baris kod Python?
Mari kita lihat apakah fungsi menarik yang boleh kita capai dengan tidak lebih daripada 10 baris kod.
1. Jana kod QR
Kod QR juga dipanggil kod bar dua dimensi Kod QR yang biasa digunakan ialah QR Kod peranti dalam beberapa tahun kebelakangan ini. Kaedah pengekodan yang popular, dan menjana kod QR juga sangat mudah Dalam Python, kita boleh menjana kod QR melalui modul MyQR, kita hanya memerlukan 2 baris kod pasang modul MyQR Di sini kami memilih muat turun sumber domestik:
pip install qrcode
Selepas pemasangan selesai, kami boleh mula menulis kod:
import qrcode text = input(输入文字或URL:) # 设置URL必须添加http:// img =qrcode.make(text) img.save() #保存图片至本地目录,可以设定路径 img.show()
Selepas kami laksanakan kod, ia akan dijana di bawah projek A kod QR. Sudah tentu, kami juga boleh memperkayakan kod QR:
Kami mula-mula memasang modul MyQR
pip installmyqr def gakki_code(): version, level, qr_name = myqr.run( words=https://520mg.com/it/#/main/2, # 可以是字符串,也可以是网址(前面要加http(s)://) version=1,# 设置容错率为最高 level='H', # 控制纠错水平,范围是L、M、Q、H,从左到右依次升高 picture=gakki.gif, # 将二维码和图片合成 colorized=True,# 彩色二维码 contrast=1.0, # 用以调节图片的对比度,1.0 表示原始图片,更小的值表示更低对比度,更大反之。默认为1.0 brightness=1.0, # 用来调节图片的亮度,其余用法和取值同上 save_name=gakki_code.gif, # 保存文件的名字,格式可以是jpg,png,bmp,gif save_dir=os.getcwd()# 控制位置 ) gakki_code()
Selain itu, MyQR juga menyokong gambar dinamik .
2. Jana awan perkataan
Awan perkataan, juga dipanggil awan perkataan, ialah persembahan visual yang menonjol bagi "kata kunci" yang muncul lebih kerap dalam data teks, membentuk kunci perkataan membentuk gambar berwarna seperti awan, supaya makna utama data teks dapat difahami sepintas lalu.
Tetapi sebagai pengekod lama, saya masih suka menggunakan kod untuk menghasilkan awan perkataan saya sendiri Adakah ia mengambil masa yang lama? baris Hanya kod python.
Mula-mula pasang perpustakaan yang diperlukan
pip install wordcloud pip install jieba pip install matplotlib import matplotlib.pyplot as plt from wordcloud import WordCloud import jieba text_from_file_with_apath = open('/Users/hecom/23tips.txt').read() wordlist_after_jieba = jieba.cut(text_from_file_with_apath, cut_all = True) wl_space_split =.join(wordlist_after_jieba) my_wordcloud = WordCloud().generate(wl_space_split) plt.imshow(my_wordcloud) plt.axis(off) plt.show()
Itu sahaja, awan perkataan yang dihasilkan adalah seperti ini:
Baca 10 baris kod ini:
- Baris 1 hingga 3 masing-masing mengimport pustaka lukisan matplotlib, wordcloud pustaka generasi awan dan pustaka pembahagian perkataan bagi jieba; Baris 4 adalah untuk membaca fail setempat Teks yang digunakan dalam kod ialah "Dua atau tiga perkara tentang pengurusan R&D di mata Lao Cao" dalam akaun awam ini. 5-6 baris, gunakan jieba untuk membahagikan perkataan dan pisahkan hasil pembahagian perkataan dengan ruang 7 baris, jana awan perkataan untuk teks selepas pembahagian perkataan; Dalam baris 8 hingga 10, gunakan pyplot untuk memaparkan gambarajah awan perkataan.
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
pip install -i https://mirror.baidu.com/pypi/simple paddlehub
Seterusnya kami hanya memerlukan 5 baris kod Anda boleh mencapai potongan kelompok:
import os, paddlehub as hub humanseg = hub.Module(name='deeplabv3p_xception65_humanseg')# 加载模型 path = 'D:/CodeField/Workplace/PythonWorkplace/GrapImage/'# 文件目录 files = [path + i for i in os.listdir(path)]# 获取文件列表 results = humanseg.segmentation(data={'image':files})# 抠图
4. Teks pengecaman emosi
Di hadapan dayung, pemprosesan bahasa semula jadi Ia juga menjadi sangat mudah. Untuk merealisasikan pengecaman emosi teks, kami juga perlu memasang PaddlePaddle dan Paddlehub Untuk pemasangan khusus, sila rujuk Bahagian 3. Kemudian datang bahagian kod kami:
import paddlehub as hub senta = hub.Module(name='senta_lstm')# 加载模型 sentence = [# 准备要识别的语句 '你真美', '你真丑', '我好难过', '我不开心', '这个游戏好好玩', '什么垃圾游戏', ] results = senta.sentiment_classify(data={text:sentence})# 情绪识别 # 输出识别结果 for result in results: print(result)
Hasil pengecaman ialah senarai kamus:
{'text': '你真美', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9602, 'negative_probs': 0.0398} {'text': '你真丑', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0033, 'negative_probs': 0.9967} {'text': '我好难过', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.5324, 'negative_probs': 0.4676} {'text': '我不开心', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.1936, 'negative_probs': 0.8064} {'text': '这个游戏好好玩', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9933, 'negative_probs': 0.0067} {'text': '什么垃圾游戏', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0108, 'negative_probs': 0.9892}
Medan sentimen_key mengandungi maklumat sentimen Untuk analisis terperinci, sila lihat pemprosesan bahasa semula jadi Python hanya memerlukan 5 baris kod.
5 Kenal pasti sama ada anda memakai topeng Berikut juga produk yang menggunakan PaddlePaddle kami memasang PaddlePaddle dan Paddlehub mengikut langkah di atas, dan kemudian mula menulis kod: import paddlehub sebagai hab# Muatkan modul model = hub.Modul(nama='pyramidbox_lite_mobile_mask')# Senarai imej senarai_imej = ['face.jpg']# Dapatkan input_dict kamus imej = {'image':image_list}# Semak sama ada ia disertakan modul Mask.face_detection(data=input_dict)Selepas melaksanakan prosedur di atas, folder detection_result akan dijana di bawah projek dan hasil pengecaman akan berada di dalamnya. 6. Pengeboman maklumat mudahTerdapat banyak cara untuk mengawal peranti input dalam Python Kita boleh menggunakan modul win32 atau pynput. Kita boleh mencapai kesan pengeboman maklumat melalui operasi gelung mudah Mengambil pynput sebagai contoh, kita perlu memasang modul terlebih dahulu:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ pynput
Sebelum menulis kod, kita perlu mendapatkan koordinat secara manual. kotak input:
from pynput import mouse # 创建一个鼠标 m_mouse = mouse.Controller() # 输出鼠标位置 print(m_mouse.position)
Mungkin ada cara yang lebih cekap, tetapi saya tidak akan melakukannya.
Selepas mendapatkannya, kita boleh merekodkan koordinat dan tidak mengalihkan tetingkap mesej. Kemudian kami laksanakan kod berikut dan tukar tetingkap ke halaman mesej:import time from pynput import mouse, keyboard time.sleep(5) m_mouse = mouse.Controller()# 创建一个鼠标 m_keyboard = keyboard.Controller()# 创建一个键盘 m_mouse.position = (850, 670) # 将鼠标移动到指定位置 m_mouse.click(mouse.Button.left) # 点击鼠标左键 while(True): m_keyboard.type('你好')# 打字 m_keyboard.press(keyboard.Key.enter)# 按下enter m_keyboard.release(keyboard.Key.enter)# 松开enter time.sleep(0.5)# 等待 0.5秒
Saya akui, ini lebih daripada 10 baris kod, dan ia bukan high-end.
7 Kenal pasti teks dalam gambar Kita boleh menggunakan Tesseract untuk mengenal pasti teks dalam gambar Ia sangat mudah untuk dilaksanakan dalam Python, tetapi ia memerlukan memuat turun fail dan mengkonfigurasi pembolehubah persekitaran peringkat awal agak menyusahkan, jadi artikel ini hanya menunjukkan kod:import pytesseract from PIL import Image img = Image.open('text.jpg') text = pytesseract.image_to_string(img) print(text)
di mana teks ialah teks yang diiktiraf. Jika anda tidak berpuas hati dengan ketepatan, anda juga boleh menggunakan antara muka teks universal Baidu.
八、简单的小游戏
从一些小例子入门感觉效率很高。
import random print(1-100数字猜谜游戏!) num = random.randint(1,100) guess =guess i = 0 while guess != num: i += 1 guess = int(input(请输入你猜的数字:)) if guess == num: print(恭喜,你猜对了!) elif guess < num: print(你猜的数小了...) else: print(你猜的数大了...) print(你总共猜了%d %i + 次)
猜数小案例当着练练手
Atas ialah kandungan terperinci Apakah perkara menarik yang boleh dilakukan dengan sepuluh baris kod Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Dalam kod VS, anda boleh menjalankan program di terminal melalui langkah -langkah berikut: Sediakan kod dan buka terminal bersepadu untuk memastikan bahawa direktori kod selaras dengan direktori kerja terminal. Pilih arahan Run mengikut bahasa pengaturcaraan (seperti python python your_file_name.py) untuk memeriksa sama ada ia berjalan dengan jayanya dan menyelesaikan kesilapan. Gunakan debugger untuk meningkatkan kecekapan debug.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

VS Kod adalah nama penuh Visual Studio Code, yang merupakan editor kod dan persekitaran pembangunan yang dibangunkan oleh Microsoft. Ia menyokong pelbagai bahasa pengaturcaraan dan menyediakan penonjolan sintaks, penyiapan automatik kod, coretan kod dan arahan pintar untuk meningkatkan kecekapan pembangunan. Melalui ekosistem lanjutan yang kaya, pengguna boleh menambah sambungan kepada keperluan dan bahasa tertentu, seperti debuggers, alat pemformatan kod, dan integrasi Git. VS Kod juga termasuk debugger intuitif yang membantu dengan cepat mencari dan menyelesaikan pepijat dalam kod anda.

Sambungan kod VS menimbulkan risiko yang berniat jahat, seperti menyembunyikan kod jahat, mengeksploitasi kelemahan, dan melancap sebagai sambungan yang sah. Kaedah untuk mengenal pasti sambungan yang berniat jahat termasuk: memeriksa penerbit, membaca komen, memeriksa kod, dan memasang dengan berhati -hati. Langkah -langkah keselamatan juga termasuk: kesedaran keselamatan, tabiat yang baik, kemas kini tetap dan perisian antivirus.

CentOS Memasang Nginx memerlukan mengikuti langkah-langkah berikut: memasang kebergantungan seperti alat pembangunan, pcre-devel, dan openssl-devel. Muat turun Pakej Kod Sumber Nginx, unzip dan menyusun dan memasangnya, dan tentukan laluan pemasangan sebagai/usr/local/nginx. Buat pengguna Nginx dan kumpulan pengguna dan tetapkan kebenaran. Ubah suai fail konfigurasi nginx.conf, dan konfigurasikan port pendengaran dan nama domain/alamat IP. Mulakan perkhidmatan Nginx. Kesalahan biasa perlu diberi perhatian, seperti isu ketergantungan, konflik pelabuhan, dan kesilapan fail konfigurasi. Pengoptimuman prestasi perlu diselaraskan mengikut keadaan tertentu, seperti menghidupkan cache dan menyesuaikan bilangan proses pekerja.
