ClusterControl Module for Puppet_MySQL
July 7, 2014
By Severalnines
If you are automating your infrastructure using Puppet, then this blog is for you. We are glad to announce the availability of a Puppet module for ClusterControl. For those using Chef, we already publishedChef cookbooksfor Galera Cluster and ClusterControl some time back.
ClusterControl on Puppet Forge
The ClusterControl module initial release is available on Puppet Forge , installing the module is as easy as:
$ puppet module install severalnines-clustercontrol
If you haven’t change the default module path, this module will be installed under /etc/puppet/modules/clustercontrol on your Puppet master host. ClusterControl supports following database clusters:
- Galera Cluster
- MySQL Galera Cluster by Codership
- Percona XtraDB Cluster by Percona
- MariaDB Galera Cluster by MariaDB
- MySQL Cluster
- MySQL Replication
- MongoDB or TokuMX Clusters
- Sharded Cluster
- Replica Set
Severalnines Package Repository
This module makes use of the Severalnines repository for yum and apt packages. This repository hosts the latest stable release of ClusterControl and all of its components.
ClusterControl and all of its components requires post-installation procedures, like setting up MySQL, granting users, setting up Apache and etc. This module will automate most of these.
If you lookup the Severalnines package repository, you will find the following packages:
- clustercontrol - Severalnines ClusterControl Web Application. Frontend for clustercontrol-controller. Previously known as cc-ui.
- clustercontrol-cmonapi - Severalnines ClusterControl REST API. Previously known as cc-cmonapi.
- cmon-agent - Agent for ClusterControl. Manage and monitor MySQL, MySQL Cluster and Galera Cluster for MySQL
- cmon-controller - ClusterControl Controller. Manage and monitor MySQL, MySQL Cluster and Galera Cluster for MySQL
The Severalnines Repository installation instructions are available at http://repo.severalnines.com .
Installing ClusterControl with Puppet
We’ll now show you how to deploy ClusterControl on top of an existing database cluster using the ClusterControl Puppet module.
This module requires the following criteria to be met:
- The node for ClusterControl must be a clean/dedicated host.
- ClusterControl node must be running on 64bit OS platform and together with the same OS distribution with the monitored DB hosts. Mixing Debian with Ubuntu and CentOS with Red Hat is acceptable.
- ClusterControl node must have an internet connection during the deployment. After the deployment, ClusterControl does not need internet access.
- Make sure your database cluster is up and running before doing this deployment.
**Please review the module’s requirement available at Puppet Forge for more details.
Now we should have the Puppet module installed. The first thing that we need to do is to generate a SSH key. ClusterControl requires a proper configuration of passwordless SSH using SSH key. It also needs an API token. The following are two pre-deployment steps that you need to complete:
1. Generate a SSH key:
$ bash /etc/puppets/modules/clustercontrol/files/s9s_helper.sh --generate-key
** This step is compulsory. The above command will generate a RSA key (if not exists) to be used by the module and the key must exist in the Puppet master module's directory before the deployment begins.
2. Generate an API token:
$ bash /etc/puppets/modules/clustercontrol/files/s9s_helper.sh --generate-tokenb7e515255db703c659677a66c4a17952515dbaf5
** Copy the generated token and specify in the node definition under api_token .
Both steps described above need to be executed once (unless you intentionally want to regenerate them all). Now, we can configure the database nodes to be managed, as per example architectures below:
As illustrated in the above figure, we have a three-node Percona XtraDB Cluster running on CentOS 6.5 64bit. The SSH user is root and the MySQL datadir is using the default /var/lib/mysql .
Therefore, the node definition in Puppet master would be as simple as:
# ClusterControl hostnode "clustercontrol.local" { class { 'clustercontrol': is_controller => true, email_address => 'admin@localhost.xyz', mysql_server_addresses => '192.168.1.11,192.168.1.12,192.168.1.13', api_token => 'b7e515255db703c659677a66c4a17952515dbaf5' }}# Monitored DB hostsnode "galera1.local", "galera2.local", "galera3.local" { class {'clustercontrol': is_controller => false, mysql_root_password => 'r00tpassword', clustercontrol_host => '192.168.1.10' }}
Once done, you can either instruct the agent to pull the configuration from the Puppet master and apply it immediately:
$ puppet agent -t
Or, wait for the Puppet agent service to apply the catalog automatically (depending on the runinterval value, default is 30 minutes). Once completed, open the ClusterControl UI page at http://[ClusterControl IP address]/clustercontrol and login using the specified email address with default password ‘admin’.
You should see something similar to below:
Take note that this module will install the RSA key at $HOME/.ssh/id_rsa_s9s . Details of this in the Puppet Forge readme page.
Example Node Definition for Other Clusters
MySQL Cluster
For MySQL Cluster, extra options are needed to allow ClusterControl to manage your management and data nodes. You may also need to add NDB data directory (e.g /mysql/data ) into the datadir list so ClusterControl knows which partition is to be monitored. In the following example, /var/lib/mysql is mysql API datadir and /mysql/data is NDB datadir.
The following figure shows our MySQL Cluster architecture running on Debian 7 (Wheezy) 64bit:
The node definition would be:
# ClusterControl hostnode "clustercontrol.local" { class { 'clustercontrol': is_controller => true, email_address => 'admin@localhost.xyz', cluster_type => 'mysqlcluster', mysql_server_addresses => '192.168.1.11,192.168.1.12', mgmnode_addresses => '192.168.1.11,192.168.1.12', datanode_addresses => '192.168.1.13,192.168.1.14', datadir => '/var/lib/mysql,/mysql/data', api_token => 'b7e515255db703c659677a66c4a17952515dbaf5' }}# Monitored DB hostsnode "mysql1.local", "mysql2.local", "data1.local", "data2.local" { class {'clustercontrol': is_controller => false, mysql_root_password => 'dpassword', clustercontrol_host => '192.168.1.10' }}
MySQL Replication
MySQL Replication node definition will be similar to Galera cluster’s. In following example, we have a three-node MySQL Replication running on RHEL 6.5 64bit on Amazon AWS. The SSH user is ec2-user with passwordless sudo:
The node definition would be:
# ClusterControl hostnode "clustercontrol.local" { class { 'clustercontrol': is_controller => true, email_address => 'admin@localhost.xyz', ssh_user => 'ec2-user', cluster_type => 'replication', mysql_server_addresses => 'mysql-master.aws,mysql-slave1.aws,mysql-slave2.aws', api_token => 'b7e515255db703c659677a66c4a17952515dbaf5' }}# Monitored DB hostsnode "mysql-master.aws", "mysql-slave1.aws", "mysql-slave2.aws" { class {'clustercontrol': is_controller => false, mysql_root_password => 'dpassword', clustercontrol_host => 'clustercontrol.aws' }}
MongoDB/TokuMX Replica Set
The MongoDB Replica Set runs on Ubuntu 12.04 LTS 64bit with sudo user ubuntu and password 'mySuDOpassXXX'. There is also an arbiter node running on mongo3.local . In MongoDB, the module does not require mysql_cmon_password and mysql_root_password which specifically for MySQL granting.
The node definition would be:
# Monitored mongoDB hostsnode 'mongo1.local', 'mongo2.local', 'mongo3.local' { class {'clustercontrol' : is_controller => false, ssh_user => 'ubuntu', clustercontrol_host => '192.168.1.40' }}# ClusterControl hostnode 'clustercontrol.local' { class {'clustercontrol' : is_controller => true, ssh_user => 'ubuntu', sudo_password => 'mySuDOpassXXX', email_address => 'admin@localhost.xyz', cluster_type=> 'mongodb', mongodb_server_addresses => 'mongo1.local:27017,mongo2.local:27017', mongoarbiter_server_addresses => 'mongo3.local:30000', datadir => '/var/lib/mongodb', api_token => 'b7e515255db703c659677a66c4a17952515dbaf5' }}
MongoDB/TokuMX Sharded Cluster
MongoDB Sharded Cluster needs to have mongocfg_server_addresses and mongos_server_addresses options specified. The mongodb_server_addresses value should be to the list of shard servers in the cluster. In the below example, we have a three-node MongoDB Sharded Cluster running on CentOS 5.6 64bit with 2 mongos nodes, 3 shard servers and 3 config servers:
The node definition would be:
# Monitored mongoDB hostsnode 'mongo1.local', 'mongo2.local', 'mongo3.local' { class {'clustercontrol' : is_controller => false, clustercontrol_host => '192.168.1.40' }}# ClusterControl hostnode 'clustercontrol.local' { class {'clustercontrol' : is_controller => true, email_address => 'admin@localhost.xyz', cluster_type=> 'mongodb', mongodb_server_addresses => '192.168.1.41:27018,192.168.1.42:27018,192.168.1.43:27018', mongocfg_server_addresses => '192.168.1.41:27019,192.168.1.42:27019,192.168.1.43:27019', mongos_server_addresses => '192.168.1.41:27017,192.168.1.42:27017', datadir => '/var/lib/mongodb', api_token => 'b7e515255db703c659677a66c4a17952515dbaf5' }}
Please have a look at the documentation at the ClusterControl Puppet Forge page for more details. In our upcoming post, we are going to elaborate on how to deploy new database clusters with ClusterControl using existing modules available in Puppet Forge.

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Pengimbasan jadual penuh mungkin lebih cepat dalam MySQL daripada menggunakan indeks. Kes -kes tertentu termasuk: 1) jumlah data adalah kecil; 2) apabila pertanyaan mengembalikan sejumlah besar data; 3) Apabila lajur indeks tidak selektif; 4) Apabila pertanyaan kompleks. Dengan menganalisis rancangan pertanyaan, mengoptimumkan indeks, mengelakkan lebih banyak indeks dan tetap mengekalkan jadual, anda boleh membuat pilihan terbaik dalam aplikasi praktikal.

Keupayaan carian teks penuh InnoDB sangat kuat, yang dapat meningkatkan kecekapan pertanyaan pangkalan data dan keupayaan untuk memproses sejumlah besar data teks. 1) InnoDB melaksanakan carian teks penuh melalui pengindeksan terbalik, menyokong pertanyaan carian asas dan maju. 2) Gunakan perlawanan dan terhadap kata kunci untuk mencari, menyokong mod boolean dan carian frasa. 3) Kaedah pengoptimuman termasuk menggunakan teknologi segmentasi perkataan, membina semula indeks dan menyesuaikan saiz cache untuk meningkatkan prestasi dan ketepatan.

Ya, MySQL boleh dipasang pada Windows 7, dan walaupun Microsoft telah berhenti menyokong Windows 7, MySQL masih serasi dengannya. Walau bagaimanapun, perkara berikut harus diperhatikan semasa proses pemasangan: Muat turun pemasang MySQL untuk Windows. Pilih versi MySQL yang sesuai (komuniti atau perusahaan). Pilih direktori pemasangan yang sesuai dan set aksara semasa proses pemasangan. Tetapkan kata laluan pengguna root dan simpan dengan betul. Sambung ke pangkalan data untuk ujian. Perhatikan isu keserasian dan keselamatan pada Windows 7, dan disyorkan untuk menaik taraf ke sistem operasi yang disokong.

Perbezaan antara indeks clustered dan indeks bukan cluster adalah: 1. Klustered Index menyimpan baris data dalam struktur indeks, yang sesuai untuk pertanyaan oleh kunci dan julat utama. 2. Indeks Indeks yang tidak berkumpul indeks nilai utama dan penunjuk kepada baris data, dan sesuai untuk pertanyaan lajur utama bukan utama.

Artikel membincangkan alat MySQL GUI yang popular seperti MySQL Workbench dan PHPMyAdmin, membandingkan ciri dan kesesuaian mereka untuk pemula dan pengguna maju. [159 aksara]

Artikel membincangkan strategi untuk mengendalikan dataset besar di MySQL, termasuk pembahagian, sharding, pengindeksan, dan pengoptimuman pertanyaan.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka. 1) Buat Pangkalan Data dan Jadual: Gunakan perintah Createdatabase dan Createtable. 2) Operasi Asas: Masukkan, Kemas kini, Padam dan Pilih. 3) Operasi lanjutan: Sertai, subquery dan pemprosesan transaksi. 4) Kemahiran Debugging: Semak sintaks, jenis data dan keizinan. 5) Cadangan Pengoptimuman: Gunakan indeks, elakkan pilih* dan gunakan transaksi.

Dalam pangkalan data MySQL, hubungan antara pengguna dan pangkalan data ditakrifkan oleh kebenaran dan jadual. Pengguna mempunyai nama pengguna dan kata laluan untuk mengakses pangkalan data. Kebenaran diberikan melalui perintah geran, sementara jadual dibuat oleh perintah membuat jadual. Untuk mewujudkan hubungan antara pengguna dan pangkalan data, anda perlu membuat pangkalan data, membuat pengguna, dan kemudian memberikan kebenaran.
