Jadual Kandungan
springboot mengkonfigurasi dwi kafka
Perkenalkan Maven kafka jar dan sediakan dua kafka
Konfigurasikan fail konfigurasi yml
Konfigurasikan kelas KafkaConfig
Hantar kelas alat MyKafkaProducer
Kelas ujian
Terima kelas
hasil ujian
Rumah Java javaTutorial Bagaimana untuk mengkonfigurasi dwi kafka dalam springboot

Bagaimana untuk mengkonfigurasi dwi kafka dalam springboot

May 10, 2023 pm 06:43 PM
springboot kafka

springboot mengkonfigurasi dwi kafka

Gunakan spring boot 2.0.8.RELEASE versi

Perkenalkan Maven kafka jar dan sediakan dua kafka

<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>
Salin selepas log masuk

Konfigurasikan fail konfigurasi yml

spring:
  kafka:
    bootstrap-servers: 180.167.180.242:9092 #kafka的访问地址,多个用","隔开
    consumer:
      enable-auto-commit: true
      group-id: kafka #群组ID
  outkafka:
    bootstrap-servers: localhost:9092 #kafka的访问地址,多个用","隔开
    consumer:
      enable-auto-commit: true
      group-id: kafka_1 #群组ID
Salin selepas log masuk

Konfigurasikan kelas KafkaConfig

import java.util.HashMap;
import java.util.Map;
 
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
 
@Configuration
@EnableKafka
public class KafkaConfig {
    @Value("${spring.kafka.bootstrap-servers}")
    private String innerServers;
    @Value("${spring.kafka.consumer.group-id}")
    private String innerGroupid;
    @Value("${spring.kafka.consumer.enable-auto-commit}")
    private String innerEnableAutoCommit;
 
    @Bean
    @Primary//理解为默认优先选择当前容器下的消费者工厂
    KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(3);
        factory.getContainerProperties().setPollTimeout(3000);
        return factory;
    }
 
    @Bean//第一个消费者工厂的bean
    public ConsumerFactory<Integer, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }
 
    @Bean
    public Map<String, Object> consumerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, innerServers);
        props.put(ConsumerConfig.GROUP_ID_CONFIG, innerGroupid);
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, innerEnableAutoCommit);
//        props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
//        props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        return props;
    }
    
    @Bean //生产者工厂配置
    public ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(senderProps());
    }
    
    @Bean //kafka发送消息模板
    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<String, String>(producerFactory());
    }
    
    /**
     * 生产者配置方法
     *
     * 生产者有三个必选属性
     * <p>
     * 1.bootstrap.servers broker地址清单,清单不要包含所有的broker地址,
     * 生产者会从给定的broker里查找到其他broker的信息。不过建议至少提供两个broker信息,一旦 其中一个宕机,生产者仍能能够连接到集群上。
     * </p>
     * <p>
     * 2.key.serializer broker希望接收到的消息的键和值都是字节数组。 生产者用对应的类把键对象序列化成字节数组。
     * </p>
     * <p>
     * 3.value.serializer 值得序列化方式
     * </p>
     *
     *
     * @return
     */
    private Map<String, Object> senderProps() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, innerServers);
        /**
         * 当从broker接收到的是临时可恢复的异常时,生产者会向broker重发消息,但是不能无限
         * 制重发,如果重发次数达到限制值,生产者将不会重试并返回错误。
         * 通过retries属性设置。默认情况下生产者会在重试后等待100ms,可以通过 retries.backoff.ms属性进行修改
         */
        props.put(ProducerConfig.RETRIES_CONFIG, 0);
        /**
         * 在考虑完成请求之前,生产者要求leader收到的确认数量。这可以控制发送记录的持久性。允许以下设置:
         * <ul>
         * <li>
         * <code> acks = 0 </ code>如果设置为零,则生产者将不会等待来自服务器的任何确认。该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且
         * <code>retries </ code>配置将不会生效(因为客户端通常不会知道任何故障)。为每条记录返回的偏移量始终设置为-1。
         * <li> <code> acks = 1 </code>
         * 这意味着leader会将记录写入其本地日志,但无需等待所有follower的完全确认即可做出回应。在这种情况下,
         * 如果leader在确认记录后立即失败但在关注者复制之前,则记录将丢失。
         * <li><code> acks = all </code>
         * 这意味着leader将等待完整的同步副本集以确认记录。这保证了只要至少一个同步副本仍然存活,记录就不会丢失。这是最强有力的保证。
         * 这相当于acks = -1设置
         */
        props.put(ProducerConfig.ACKS_CONFIG, "1");
        /**
         * 当有多条消息要被发送到统一分区是,生产者会把他们放到统一批里。kafka通过批次的概念来 提高吞吐量,但是也会在增加延迟。
         */
        // 以下配置当缓存数量达到16kb,就会触发网络请求,发送消息
//        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        // 每条消息在缓存中的最长时间,如果超过这个时间就会忽略batch.size的限制,由客户端立即将消息发送出去
//        props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
//        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }
    
    @Value("${spring.outkafka.bootstrap-servers}")
    private String outServers;
    @Value("${spring.outkafka.consumer.group-id}")
    private String outGroupid;
    @Value("${spring.outkafka.consumer.enable-auto-commit}")
    private String outEnableAutoCommit;
    
 
    static {
        
    }
    
    /**
     * 连接第二个kafka集群的配置
     */
    @Bean
    KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactoryOutSchedule() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactoryOutSchedule());
        factory.setConcurrency(3);
        factory.getContainerProperties().setPollTimeout(3000);
        return factory;
    }
 
    @Bean
    public ConsumerFactory<Integer, String> consumerFactoryOutSchedule() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigsOutSchedule());
    }
 
    /**
     * 连接第二个集群的消费者配置
     */
    @Bean
    public Map<String, Object> consumerConfigsOutSchedule() {
        Map<String, Object> props = new HashMap<>();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, outServers);
        props.put(ConsumerConfig.GROUP_ID_CONFIG, outGroupid);
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, outEnableAutoCommit);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        return props;
    }
    
    @Bean //生产者工厂配置
    public ProducerFactory<String, String> producerOutFactory() {
        return new DefaultKafkaProducerFactory<>(senderOutProps());
    }
    
    @Bean //kafka发送消息模板
    public KafkaTemplate<String, String> kafkaOutTemplate() {
        return new KafkaTemplate<String, String>(producerOutFactory());
    }
    
    /**
     * 生产者配置方法
     *
     * 生产者有三个必选属性
     * <p>
     * 1.bootstrap.servers broker地址清单,清单不要包含所有的broker地址,
     * 生产者会从给定的broker里查找到其他broker的信息。不过建议至少提供两个broker信息,一旦 其中一个宕机,生产者仍能能够连接到集群上。
     * </p>
     * <p>
     * 2.key.serializer broker希望接收到的消息的键和值都是字节数组。 生产者用对应的类把键对象序列化成字节数组。
     * </p>
     * <p>
     * 3.value.serializer 值得序列化方式
     * </p>
     *
     *
     * @return
     */
    private Map<String, Object> senderOutProps() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, outServers);
        /**
         * 当从broker接收到的是临时可恢复的异常时,生产者会向broker重发消息,但是不能无限
         * 制重发,如果重发次数达到限制值,生产者将不会重试并返回错误。
         * 通过retries属性设置。默认情况下生产者会在重试后等待100ms,可以通过 retries.backoff.ms属性进行修改
         */
        props.put(ProducerConfig.RETRIES_CONFIG, 0);
        /**
         * 在考虑完成请求之前,生产者要求leader收到的确认数量。这可以控制发送记录的持久性。允许以下设置:
         * <ul>
         * <li>
         * <code> acks = 0 </ code>如果设置为零,则生产者将不会等待来自服务器的任何确认。该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且
         * <code>retries </ code>配置将不会生效(因为客户端通常不会知道任何故障)。为每条记录返回的偏移量始终设置为-1。
         * <li> <code> acks = 1 </code>
         * 这意味着leader会将记录写入其本地日志,但无需等待所有follower的完全确认即可做出回应。在这种情况下,
         * 如果leader在确认记录后立即失败但在关注者复制之前,则记录将丢失。
         * <li><code> acks = all </code>
         * 这意味着leader将等待完整的同步副本集以确认记录。这保证了只要至少一个同步副本仍然存活,记录就不会丢失。这是最强有力的保证。
         * 这相当于acks = -1设置
         */
        props.put(ProducerConfig.ACKS_CONFIG, "1");
        /**
         * 当有多条消息要被发送到统一分区是,生产者会把他们放到统一批里。kafka通过批次的概念来 提高吞吐量,但是也会在增加延迟。
         */
        // 以下配置当缓存数量达到16kb,就会触发网络请求,发送消息
//        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        // 每条消息在缓存中的最长时间,如果超过这个时间就会忽略batch.size的限制,由客户端立即将消息发送出去
//        props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
//        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }
}
Salin selepas log masuk

Hantar kelas alat MyKafkaProducer

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.stereotype.Component;
import org.springframework.util.concurrent.ListenableFuture;
 
import lombok.extern.slf4j.Slf4j;
 
/**
 * <p>
 * <b>KafkaProducer Description:</b> kafka生产者
 * </p>
 *
 * @author douzaixing<b>DATE</b> 2019年7月8日 下午4:09:29
 */
@Component // 这个必须加入容器不然,不会执行
@EnableScheduling // 这里是为了测试加入定时调度
@Slf4j
public class MyKafkaProducer {
 
    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;
 
    @Autowired
    private KafkaTemplate<String, String> kafkaOutTemplate;
 
    public ListenableFuture<SendResult<String, String>> send(String topic, String key, String json) {
        ListenableFuture<SendResult<String, String>> result = kafkaTemplate.send(topic, key, json);
        log.info("inner kafka send #topic=" + topic + "#key=" + key + "#json=" + json + "#推送成功===========");
        return result;
    }
 
    public ListenableFuture<SendResult<String, String>> sendOut(String topic, String key, String json) {
        ListenableFuture<SendResult<String, String>> result = kafkaOutTemplate.send(topic, key, json);
        log.info("out kafka send #topic=" + topic + "#key=" + key + "#json=" + json + "#推送成功===========");
        return result;
    }
 
}
Salin selepas log masuk

Kelas ujian

@Slf4j
@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest(classes={OesBcServiceApplication.class})
public class MoreKafkaTest {
    
    @Autowired
    private MyKafkaProducer kafkaProducer;
    
    @Test
    public void sendInner() {
        for (int i = 0; i < 1; i++) {
            kafkaProducer.send("inner_test", "douzi" + i, "liyuehua" + i);
            kafkaProducer.sendOut("out_test", "douziout" + i, "fanbingbing" + i);
        }
    }
}
Salin selepas log masuk

Terima kelas

@Component
@Slf4j
public class KafkaConsumer {  
    @KafkaListener(topics={"inner_test"}, containerFactory="kafkaListenerContainerFactory")
    public void innerlistener(ConsumerRecord<String, String> record) {
        log.info("inner kafka receive #key=" + record.key() + "#value=" + record.value());
    }
    
    @KafkaListener(topics={"out_test"}, containerFactory="kafkaListenerContainerFactoryOutSchedule")
    public void outListener(ConsumerRecord<String, String> record) {
        log.info("out kafka receive #key=" + record.key() + "#value=" + record.value());
    }
}
Salin selepas log masuk

hasil ujian

07-11 12:41:27.811 INFO [com.wondertek.oes.bc.service.send.MyKafkaProducer] - kafka dalaman hantar #topic=inner_test#key=douzi0#json=liyuehua0#Tolak berjaya= = =========

07-11 12:41:27.995 INFO [com.wondertek.oes.bc.service.send.KafkaConsumer] - kafka dalaman menerima #key=douzi0#value = liyuehua0
07-11 12:41:28.005 INFO [com.wondertek.oes.bc.service.send.MyKafkaProducer] - keluar kafka hantar #topic=out_test#key=douziout0#json=fanbingbing0#Tolak berjaya== = ========
07-11 12:41:28.013 INFO [com.wondertek.oes.bc.service.send.KafkaConsumer] - keluar kafka terima #key=douziout0#value=fanbingbing0

Atas ialah kandungan terperinci Bagaimana untuk mengkonfigurasi dwi kafka dalam springboot. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimana untuk melaksanakan analisis saham masa nyata menggunakan PHP dan Kafka Bagaimana untuk melaksanakan analisis saham masa nyata menggunakan PHP dan Kafka Jun 28, 2023 am 10:04 AM

Dengan perkembangan Internet dan teknologi, pelaburan digital telah menjadi topik yang semakin membimbangkan. Ramai pelabur terus meneroka dan mengkaji strategi pelaburan, dengan harapan memperoleh pulangan pelaburan yang lebih tinggi. Dalam perdagangan saham, analisis saham masa nyata adalah sangat penting untuk membuat keputusan, dan penggunaan baris gilir mesej masa nyata Kafka dan teknologi PHP adalah cara yang cekap dan praktikal. 1. Pengenalan kepada Kafka Kafka ialah sistem pemesejan terbitan dan langgan yang diedarkan tinggi yang dibangunkan oleh LinkedIn. Ciri-ciri utama Kafka ialah

Analisis perbandingan dan perbezaan antara SpringBoot dan SpringMVC Analisis perbandingan dan perbezaan antara SpringBoot dan SpringMVC Dec 29, 2023 am 11:02 AM

SpringBoot dan SpringMVC adalah kedua-dua rangka kerja yang biasa digunakan dalam pembangunan Java, tetapi terdapat beberapa perbezaan yang jelas antara mereka. Artikel ini akan meneroka ciri dan penggunaan kedua-dua rangka kerja ini dan membandingkan perbezaannya. Mula-mula, mari belajar tentang SpringBoot. SpringBoot telah dibangunkan oleh pasukan Pivotal untuk memudahkan penciptaan dan penggunaan aplikasi berdasarkan rangka kerja Spring. Ia menyediakan cara yang pantas dan ringan untuk membina bersendirian, boleh dilaksanakan

Cara membina aplikasi pemprosesan data masa nyata menggunakan React dan Apache Kafka Cara membina aplikasi pemprosesan data masa nyata menggunakan React dan Apache Kafka Sep 27, 2023 pm 02:25 PM

Cara menggunakan React dan Apache Kafka untuk membina aplikasi pemprosesan data masa nyata Pengenalan: Dengan peningkatan data besar dan pemprosesan data masa nyata, membina aplikasi pemprosesan data masa nyata telah menjadi usaha ramai pembangun. Gabungan React, rangka kerja bahagian hadapan yang popular dan Apache Kafka, sistem pemesejan teragih berprestasi tinggi, boleh membantu kami membina aplikasi pemprosesan data masa nyata. Artikel ini akan memperkenalkan cara menggunakan React dan Apache Kafka untuk membina aplikasi pemprosesan data masa nyata, dan

Tutorial praktikal pembangunan SpringBoot+Dubbo+Nacos Tutorial praktikal pembangunan SpringBoot+Dubbo+Nacos Aug 15, 2023 pm 04:49 PM

Artikel ini akan menulis contoh terperinci untuk bercakap tentang perkembangan sebenar dubbo+nacos+Spring Boot. Artikel ini tidak akan merangkumi terlalu banyak pengetahuan teori, tetapi akan menulis contoh paling mudah untuk menggambarkan bagaimana dubbo boleh disepadukan dengan nacos untuk membina persekitaran pembangunan dengan cepat.

Lima pilihan alat visualisasi untuk meneroka Kafka Lima pilihan alat visualisasi untuk meneroka Kafka Feb 01, 2024 am 08:03 AM

Lima pilihan untuk alat visualisasi Kafka ApacheKafka ialah platform pemprosesan strim teragih yang mampu memproses sejumlah besar data masa nyata. Ia digunakan secara meluas untuk membina saluran paip data masa nyata, baris gilir mesej dan aplikasi dipacu peristiwa. Alat visualisasi Kafka boleh membantu pengguna memantau dan mengurus kelompok Kafka serta lebih memahami aliran data Kafka. Berikut ialah pengenalan kepada lima alat visualisasi Kafka yang popular: ConfluentControlCenterConfluent

Analisis perbandingan alat visualisasi kafka: Bagaimana untuk memilih alat yang paling sesuai? Analisis perbandingan alat visualisasi kafka: Bagaimana untuk memilih alat yang paling sesuai? Jan 05, 2024 pm 12:15 PM

Bagaimana untuk memilih alat visualisasi Kafka yang betul? Analisis perbandingan lima alat Pengenalan: Kafka ialah sistem baris gilir mesej teragih berprestasi tinggi dan tinggi yang digunakan secara meluas dalam bidang data besar. Dengan populariti Kafka, semakin banyak perusahaan dan pembangun memerlukan alat visual untuk memantau dan mengurus kelompok Kafka dengan mudah. Artikel ini akan memperkenalkan lima alat visualisasi Kafka yang biasa digunakan dan membandingkan ciri serta fungsinya untuk membantu pembaca memilih alat yang sesuai dengan keperluan mereka. 1. KafkaManager

Bagaimana untuk memasang Apache Kafka pada Rocky Linux? Bagaimana untuk memasang Apache Kafka pada Rocky Linux? Mar 01, 2024 pm 10:37 PM

Untuk memasang ApacheKafka pada RockyLinux, anda boleh mengikuti langkah di bawah: Kemas kini sistem: Pertama, pastikan sistem RockyLinux anda dikemas kini, laksanakan arahan berikut untuk mengemas kini pakej sistem: sudoyumupdate Pasang Java: ApacheKafka bergantung pada Java, jadi anda perlu memasang Java Development Kit (JDK) terlebih dahulu ). OpenJDK boleh dipasang melalui arahan berikut: sudoyuminstalljava-1.8.0-openjdk-devel Muat turun dan nyahmampat: Lawati laman web rasmi ApacheKafka () untuk memuat turun pakej binari terkini. Pilih versi yang stabil

Amalan go-zero dan Kafka+Avro: membina sistem pemprosesan data interaktif berprestasi tinggi Amalan go-zero dan Kafka+Avro: membina sistem pemprosesan data interaktif berprestasi tinggi Jun 23, 2023 am 09:04 AM

Dalam tahun-tahun kebelakangan ini, dengan peningkatan data besar dan komuniti sumber terbuka yang aktif, semakin banyak perusahaan telah mula mencari sistem pemprosesan data interaktif berprestasi tinggi untuk memenuhi keperluan data yang semakin meningkat. Dalam gelombang peningkatan teknologi ini, go-zero dan Kafka+Avro sedang diberi perhatian dan diterima pakai oleh semakin banyak perusahaan. go-zero ialah rangka kerja mikroperkhidmatan yang dibangunkan berdasarkan bahasa Golang Ia mempunyai ciri-ciri prestasi tinggi, kemudahan penggunaan, pengembangan mudah dan penyelenggaraan yang mudah. ​​Ia direka untuk membantu perusahaan membina sistem aplikasi perkhidmatan mikro yang cekap. pertumbuhannya yang pesat

See all articles