


Cara menggunakan alat log keluaran Python3 Loguru
1. Prakata
Modul pengelogan Python mentakrifkan fungsi dan kelas yang melaksanakan pengelogan peristiwa fleksibel untuk aplikasi dan perpustakaan.
Semasa proses pembangunan program, banyak program perlu merekodkan log, dan maklumat yang terkandung dalam log termasuk log akses program biasa dan mungkin juga termasuk ralat, amaran dan output maklumat lain yang disediakan oleh modul pengelogan Python log Antara muka di mana log dalam pelbagai format boleh disimpan Pembalakan menyediakan satu set fungsi kemudahan untuk penggunaan pembalakan yang mudah.
Faedah utama menggunakan modul Python Logging ialah semua modul Python boleh mengambil bahagian dalam pengelogan Modul Logging menyediakan banyak fleksibiliti.
Mengapa menggunakan loguru?
Mudah dan mudah untuk membantu kami mengeluarkan maklumat log yang diperlukan:
Apabila menggunakan Python untuk menulis atur cara atau skrip, masalah biasa ialah: Log perlu dipadamkan. Di satu pihak, ia boleh membantu kami menyelesaikan masalah apabila terdapat masalah dengan program, dan sebaliknya, ia boleh membantu kami merekodkan maklumat yang memerlukan perhatian.
Walau bagaimanapun, jika anda menggunakan modul pengelogan terbina dalam, kami perlu melakukan pemulaan yang berbeza dan kerja lain yang berkaitan. Bagi pelajar yang tidak biasa dengan modul ini, ia masih agak sukar, seperti keperluan untuk mengkonfigurasi Handler/Formatter, dll. Apabila kerumitan perniagaan meningkat, terdapat keperluan yang lebih tinggi untuk pengumpulan log, seperti: klasifikasi log, storan fail, penulisan tak segerak, jenis tersuai, dsb.
loguru ialah pihak ketiga yang mudah dan berkuasa dalam perpustakaan Pengelogan Python yang bertujuan untuk menjadikan pembalakan Python kurang menyakitkan dengan menambahkan satu set ciri berguna yang menangani kaveat pembalak standard.
2. Gunakan loguru dengan elegan
1. Pasang loguru
pip install loguru
2. disenaraikan di bawah Beberapa perkara:
- Sedia untuk digunakan di luar kotak, tiada penyediaan diperlukan
- Tiada permulaan diperlukan, fungsi yang diimport boleh digunakan
- Kaedah pembalakan dan lambakan/pemeliharaan/pemampatan fail yang lebih mudah
- Output berformat rentetan yang lebih elegan
- Pengecualian boleh ditangkap dalam benang atau benang utama
- Tahap gaya pembalakan yang berbeza boleh ditetapkan
- Menyokong asynchronous, threading dan berbilang proses Selamat
- Menyokong penilaian malas
- Berfungsi dengan skrip dan perpustakaan
- Serasi sepenuhnya dengan pengelogan standard
- Pengendalian tarikh dan masa yang lebih baik
- 3. Tidak perlu Selepas memulakan dan mengimport fungsi, anda mesti bertanya, bagaimana untuk menyelesaikan masalah?
Bagaimana untuk menetapkan pemformatan log?
- Bagaimana untuk menapis mesej?
- Bagaimana untuk menetapkan tahap log?
from loguru import logger logger.debug("That's it, beautiful and simple logging!")
Salin selepas log masukBukankah sangat mudah~4. Kaedah pengelogan dan pemindahan/pengekalan/mampatan yang lebih mudah
# add logger.add(sys.stderr, \ format="{time} {level} {message}",\ filter="my_module",\ level="INFO")
Salin selepas log masuk5 output berformat# 日志文件记录 logger.add("file_{time}.log") # 日志文件转存 logger.add("file_{time}.log", rotation="500 MB") logger.add("file_{time}.log", rotation="12:00") logger.add("file_{time}.log", rotation="1 week") # 多次时间之后清理 logger.add("file_X.log", retention="10 days") # 使用zip文件格式保存 logger.add("file_Y.log", compression="zip")
Salin selepas log masuk6. Tangkap pengecualian dalam sub-benang atau utas utama
logger.info( "If you're using Python {}, prefer {feature} of course!", 3.10, feature="f-strings")
Salin selepas log masuk7 Tahap gaya pengelogan yang berbeza boleh ditetapkan
Loguru akan menambah warna yang berbeza secara automatik. membezakan tahap log yang berbeza, dan juga menyokong warna tersuai~
@logger.catch def my_function(x, y, z): # An error? It's caught anyway! return 1 / (x + y + z) my_function(0, 0, 0)
8 Sokong keselamatan tak segerak dan benang dan berbilang proses
Secara lalai, maklumat log ditambahkan pada logger adalah selamat untuk benang. Tetapi ini tidak selamat berbilang proses, kami boleh memastikan integriti log dengan menambah parameter enqueue.
Jika kami ingin menggunakan log masuk tugas tak segerak, kami juga boleh menggunakan parameter yang sama untuk memastikan ini. Dan tunggu untuk pelaksanaan selesai melalui complete().
logger.add(sys.stdout, colorize=True, format="<green>{time}</green> <level>{message}</level>") logger.add('logs/z_{time}.log', level='DEBUG', format='{time:YYYY-MM-DD :mm:ss} - {level} - {file} - {line} - {message}', rotation="10 MB")
- Anda membacanya dengan betul, cuma
- boleh dilaksanakan secara tak segerak 9 Perihalan lengkap pengecualian
- digunakan untuk merekodkan kod Untuk penjejakan pepijat bagi pengecualian yang berlaku dalam Loguru, Loguru membantu anda mengenal pasti masalah dengan membenarkan keseluruhan surih tindanan dipaparkan (termasuk nilai pembolehubah) 10. Pengelogan berstruktur
# 异步写入 logger.add("some_file.log", enqueue=True)
Salin selepas log masuk
enqueue=True
Untuk mensiri log untuk memudahkan menghuraikan atau menghantar struktur data, gunakan parameter penyirian untuk menukar setiap mesej log kepada rentetan JSON sebelum menghantarnya kepada penerima yang dikonfigurasikan.
Selain itu, menggunakan kaedah bind(), mesej logger boleh dikontekstualisasikan dengan mengubah suai sifat rekod tambahan. Anda juga boleh mempunyai kawalan yang lebih terperinci ke atas pembalakan dengan menggabungkan bind() dan penapis.
- Akhir sekali kaedah patch() membenarkan menambahkan nilai dinamik pada dict rekod untuk setiap mesej baharu.
logger.add("out.log", backtrace=True, diagnose=True) def func(a, b): return a / b def nested(c): try: func(5, c) except ZeroDivisionError: logger.exception("What?!") nested(0)
Salin selepas log masuk11. Pengiraan malas Kadangkala anda ingin log butiran dalam persekitaran pengeluaran tanpa menjejaskan prestasi Anda boleh menggunakan kaedah opt() untuk mencapai ini.
# 序列化为json格式 logger.add(custom_sink_function, serialize=True) # bind方法的用处 logger.add("file.log", format="{extra[ip]} {extra[user]} {message}") context_logger = logger.bind(ip="192.168.2.174", user="someone") context_logger.info("Contextualize your logger easily") context_logger.bind(user="someone_else").info("Inline binding of extra attribute") context_logger.info("Use kwargs to add context during formatting: {user}", user="anybody") # 粒度控制 logger.add("special.log", filter=lambda record: "special" in record["extra"]) logger.debug("This message is not logged to the file") logger.bind(special=True).info("This message, though, is logged to the file!") # patch()方法的用处 logger.add(sys.stderr, format="{extra[utc]} {message}") loggerlogger = logger.patch(lambda record: record["extra"].update(utc=datetime.utcnow()))
Salin selepas log masuk12. Tahap boleh disesuaikanlogger.opt(lazy=True).debug("If sink level <= DEBUG: {x}", x=lambda: expensive_function(2**64)) # By the way, "opt()" serves many usages logger.opt(exception=True).info("Error stacktrace added to the log message (tuple accepted too)") logger.opt(colors=True).info("Per message <blue>colors</blue>") logger.opt(record=True).info("Display values from the record (eg. {record[thread]})") logger.opt(raw=True).info("Bypass sink formatting\n") logger.opt(depth=1).info("Use parent stack context (useful within wrapped functions)") logger.opt(capture=False).info("Keyword arguments not added to {dest} dict", dest="extra")
Salin selepas log masuk13 Sesuai untuk skrip dan perpustakaan
new_level = logger.level("SNAKY", no=38, color="<yellow>", icon="????") logger.log("SNAKY", "Here we go!")
Salin selepas log masuk14. Serasi sepenuhnya dengan pengelogan standard
handler = logging.handlers.SysLogHandler(address=('localhost', 514)) logger.add(handler) class PropagateHandler(logging.Handler): def emit(self, record): logging.getLogger(record.name).handle(record) logger.add(PropagateHandler(), format="{message}") class InterceptHandler(logging.Handler): def emit(self, record): # Get corresponding Loguru level if it exists try: level = logger.level(record.levelname).name except ValueError: level = record.levelno # Find caller from where originated the logged message frame, depth = logging.currentframe(), 2 while frame.f_code.co_filename == logging.__file__: frameframe = frame.f_back depth += 1 logger.opt(depthdepth=depth, exception=record.exc_info).log(level, record.getMessage()) logging.basicConfig(handlers=[InterceptHandler()], level=0)
15. 非常方便的解析器
从生成的日志中提取特定的信息通常很有用,这就是为什么 Loguru 提供了一个 parse() 方法来帮助处理日志和正则表达式。
pattern = r"(?P<time>.*) - (?P<level>[0-9]+) - (?P<message>.*)" # Regex with named groups caster_dict = dict(time=dateutil.parser.parse, level=int) # Transform matching groups for groups in logger.parse("file.log", pattern, cast=caster_dict): print("Parsed:", groups) # {"level": 30, "message": "Log example", "time": datetime(2018, 12, 09, 11, 23, 55)}
16. 通知机制 (邮件告警)
import notifiers params = { "username": "you@gmail.com", "password": "abc123", "to": "dest@gmail.com" } # Send a single notification notifier = notifiers.get_notifier("gmail") notifier.notify(message="The application is running!", **params) # Be alerted on each error message from notifiers.logging import NotificationHandler handler = NotificationHandler("gmail", defaults=params) logger.add(handler, level="ERROR")
17. Flask 框架集成
现在最关键的一个问题是如何兼容别的 logger,比如说 tornado 或者 django 有一些默认的 logger。
经过研究,最好的解决方案是参考官方文档的,完全整合 logging 的工作方式。比如下面将所有的 logging都用 loguru 的 logger 再发送一遍消息。
import logging import sys from pathlib import Path from flask import Flask from loguru import logger app = Flask(__name__) class InterceptHandler(logging.Handler): def emit(self, record): loggerlogger_opt = logger.opt(depth=6, exception=record.exc_info) logger_opt.log(record.levelname, record.getMessage()) def configure_logging(flask_app: Flask): """配置日志""" path = Path(flask_app.config['LOG_PATH']) if not path.exists(): path.mkdir(parents=True) log_name = Path(path, 'sips.log') logging.basicConfig(handlers=[InterceptHandler(level='INFO')], level='INFO') # 配置日志到标准输出流 logger.configure(handlers=[{"sink": sys.stderr, "level": 'INFO'}]) # 配置日志到输出到文件 logger.add(log_name, rotation="500 MB", encoding='utf-8', colorize=False, level='INFO')
18. 要点解析
介绍,主要函数的使用方法和细节 - add()的创建和删除
add() 非常重要的参数 sink 参数
具体的实现规范可以参见官方文档
可以实现自定义 Handler 的配置,比如 FileHandler、StreamHandler 等等
可以自行定义输出实现
代表文件路径,会自动创建对应路径的日志文件并将日志输出进去
例如 sys.stderr 或者 open(‘file.log’, ‘w’) 都可以
可以传入一个 file 对象
可以直接传入一个 str 字符串或者 pathlib.Path 对象
可以是一个方法
可以是一个 logging 模块的 Handler
可以是一个自定义的类
def add(self, sink, *, level=_defaults.LOGURU_LEVEL, format=_defaults.LOGURU_FORMAT, filter=_defaults.LOGURU_FILTER, colorize=_defaults.LOGURU_COLORIZE, serialize=_defaults.LOGURU_SERIALIZE, backtrace=_defaults.LOGURU_BACKTRACE, diagnose=_defaults.LOGURU_DIAGNOSE, enqueue=_defaults.LOGURU_ENQUEUE, catch=_defaults.LOGURU_CATCH, **kwargs ):
另外添加 sink 之后我们也可以对其进行删除,相当于重新刷新并写入新的内容。删除的时候根据刚刚 add 方法返回的 id 进行删除即可。可以发现,在调用 remove 方法之后,确实将历史 log 删除了。但实际上这并不是删除,只不过是将 sink 对象移除之后,在这之前的内容不会再输出到日志中,这样我们就可以实现日志的刷新重新写入操作
from loguru import logger trace = logger.add('runtime.log') logger.debug('this is a debug message') logger.remove(trace) logger.debug('this is another debug message')
三、总结
我们在开发流程中, 通过日志快速定位问题, 高效率解决问题, 我认为 loguru 能帮你解决不少麻烦, 赶快试试吧~
当然, 使用各种也有不少麻烦, 例如:
1. 常见错误1:
--- Logging error in Loguru Handler #3 ---
Record was: None
Traceback (most recent call last):
File "/usr/local/lib/python3.9/site-packages/loguru/_handler.py", line 272, in _queued_writer
message = queue.get()
File "/usr/local/lib/python3.9/multiprocessing/queues.py", line 366, in get
res = self._reader.recv_bytes()
File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 221, in recv_bytes
buf = self._recv_bytes(maxlength)
File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 419, in _recv_bytes
buf = self._recv(4)
File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 384, in _recv
chunk = read(handle, remaining)
OSError: [Errno 9] Bad file descriptor
--- End of logging error ---
解决办法:
尝试将logs文件夹忽略git提交, 避免和服务器文件冲突即可;
当然也不止这个原因引起这个问题, 也可能是三方库(ciscoconfparse)冲突所致.解决办法: https://github.com/Delgan/loguru/issues/534
2.常见错误2:
File "/home/ronaldinho/xxx/xxx/venv/lib/python3.9/site-packages/loguru/_logger.py", line 939, in add
handler = Handler(
File "/home/ronaldinho/xxx/xxx/venv/lib/python3.9/site-packages/loguru/_handler.py", line 86, in __init__
self._queue = multiprocessing.SimpleQueue()
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/context.py", line 113, in SimpleQueue
return SimpleQueue(ctx=self.get_context())
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/queues.py", line 342, in __init__
self._rlock = ctx.Lock()
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/context.py", line 68, in Lock
return Lock(ctx=self.get_context())
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/synchronize.py", line 162, in __init__
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/synchronize.py", line 57, in __init__
OSError: [Errno 24] Too many open files
你可以 remove()添加的处理程序,它应该释放文件句柄。
Atas ialah kandungan terperinci Cara menggunakan alat log keluaran Python3 Loguru. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

MySQL boleh berjalan tanpa sambungan rangkaian untuk penyimpanan dan pengurusan data asas. Walau bagaimanapun, sambungan rangkaian diperlukan untuk interaksi dengan sistem lain, akses jauh, atau menggunakan ciri -ciri canggih seperti replikasi dan clustering. Di samping itu, langkah -langkah keselamatan (seperti firewall), pengoptimuman prestasi (pilih sambungan rangkaian yang betul), dan sandaran data adalah penting untuk menyambung ke Internet.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

MySQL Workbench boleh menyambung ke MariaDB, dengan syarat bahawa konfigurasi adalah betul. Mula -mula pilih "MariaDB" sebagai jenis penyambung. Dalam konfigurasi sambungan, tetapkan host, port, pengguna, kata laluan, dan pangkalan data dengan betul. Apabila menguji sambungan, periksa bahawa perkhidmatan MariaDB dimulakan, sama ada nama pengguna dan kata laluan betul, sama ada nombor port betul, sama ada firewall membenarkan sambungan, dan sama ada pangkalan data itu wujud. Dalam penggunaan lanjutan, gunakan teknologi penyatuan sambungan untuk mengoptimumkan prestasi. Kesilapan biasa termasuk kebenaran yang tidak mencukupi, masalah sambungan rangkaian, dan lain -lain. Apabila kesilapan debugging, dengan teliti menganalisis maklumat ralat dan gunakan alat penyahpepijatan. Mengoptimumkan konfigurasi rangkaian dapat meningkatkan prestasi

Untuk persekitaran pengeluaran, pelayan biasanya diperlukan untuk menjalankan MySQL, atas alasan termasuk prestasi, kebolehpercayaan, keselamatan, dan skalabilitas. Pelayan biasanya mempunyai perkakasan yang lebih kuat, konfigurasi berlebihan dan langkah keselamatan yang lebih ketat. Untuk aplikasi kecil, rendah, MySQL boleh dijalankan pada mesin tempatan, tetapi penggunaan sumber, risiko keselamatan dan kos penyelenggaraan perlu dipertimbangkan dengan teliti. Untuk kebolehpercayaan dan keselamatan yang lebih besar, MySQL harus digunakan di awan atau pelayan lain. Memilih konfigurasi pelayan yang sesuai memerlukan penilaian berdasarkan beban aplikasi dan jumlah data.
