


Buat pengelas pembelajaran mendalam untuk gambar kucing dan anjing menggunakan TensorFlow dan Keras
Dalam artikel ini, kami akan menggunakan TensorFlow dan Keras untuk mencipta pengelas imej yang boleh membezakan antara imej kucing dan anjing. Untuk melakukan ini, kami akan menggunakan set data cats_vs_dogs daripada set data TensorFlow. Set data terdiri daripada 25,000 imej berlabel kucing dan anjing, yang mana 80% digunakan untuk latihan, 10% untuk pengesahan dan 10% untuk ujian.
Memuatkan data
Kami mulakan dengan memuatkan set data menggunakan TensorFlow Datasets. Pisahkan set data kepada set latihan, set pengesahan dan set ujian, masing-masing menyumbang 80%, 10% dan 10% daripada data, dan tentukan fungsi untuk memaparkan beberapa imej sampel dalam set data.
<code>import tensorflow as tfimport matplotlib.pyplot as pltimport tensorflow_datasets as tfds# 加载数据(train_data, validation_data, test_data), info = tfds.load('cats_vs_dogs', split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'], with_info=True, as_supervised=True)# 获取图像的标签label_names = info.features['label'].names# 定义一个函数来显示一些样本图像plt.figure(figsize=(10, 10))for i, (image, label) in enumerate(train_data.take(9)):ax = plt.subplot(3, 3, i + 1)plt.imshow(image)plt.title(label_names[label])plt.axis('off')</code>
Data prapemprosesan
Sebelum melatih model, data perlu dipraproses. Imej akan diubah saiz kepada saiz seragam 150x150 piksel, nilai piksel akan dinormalisasi antara 0 dan 1, dan data akan diproses secara kelompok supaya ia boleh diimport ke dalam model secara berkelompok.
<code>IMG_SIZE = 150</code>
Membina model
Artikel ini akan menggunakan model MobileNet V2 yang telah dilatih sebagai model asas. Dan tambahkan lapisan pengumpulan purata global dan lapisan padat padanya untuk pengelasan. Artikel ini akan membekukan pemberat model asas supaya hanya pemberat lapisan atas dikemas kini semasa latihan.
<code>def format_image(image, label):image = tf.cast(image, tf.float32) / 255.0# Normalize the pixel valuesimage = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))# Resize to the desired sizereturn image, labelbatch_size = 32train_data = train_data.map(format_image).shuffle(1000).batch(batch_size)validation_data = validation_data.map(format_image).batch(batch_size)test_data = test_data.map(format_image).batch(batch_size)</code>
Model latihan
Artikel ini akan melatih model untuk 3 kitaran dan mengujinya pada set pengesahan selepas setiap kitaran untuk mengesahkan. Kami akan menyimpan model selepas latihan supaya kami boleh menggunakannya dalam ujian akan datang.
<code>base_model = tf.keras.applications.MobileNetV2(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False, weights='imagenet')base_model.trainable = False</code>
Sejarah Model
Jika anda ingin tahu bagaimana lapisan Mobilenet V2 berfungsi, seperti yang ditunjukkan di bawah adalah hasil daripada lapisan ini.
Menilai model
Selepas latihan selesai model akan dinilai pada ujian yang ditetapkan kepada lihat cara ia berfungsi Bagaimana ia berprestasi pada data baharu.
<code>global_average_layer = tf.keras.layers.GlobalAveragePooling2D()prediction_layer = tf.keras.layers.Dense(1)model = tf.keras.Sequential([base_model,global_average_layer,prediction_layer])model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=0.0001),loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),metrics=['accuracy'])</code>
Ramalan
Akhir sekali, artikel ini akan menggunakan model untuk meramal beberapa imej sampel dalam set ujian dan menunjukkan hasilnya.
<code>global_average_layer = tf.keras.layers.GlobalAveragePooling2D()prediction_layer = tf.keras.layers.Dense(1)model = tf.keras.Sequential([base_model,global_average_layer,prediction_layer])model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=0.0001),loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),metrics=['accuracy'])</code>
Selesai! Kami mencipta pengelas imej yang boleh membezakan antara imej kucing dan anjing dengan menggunakan TensorFlow dan Keras. Dengan beberapa pelarasan dan penalaan halus, pendekatan ini juga boleh digunakan untuk masalah pengelasan imej yang lain.
Atas ialah kandungan terperinci Buat pengelas pembelajaran mendalam untuk gambar kucing dan anjing menggunakan TensorFlow dan Keras. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



BERT ialah model bahasa pembelajaran mendalam pra-latihan yang dicadangkan oleh Google pada 2018. Nama penuh ialah BidirectionalEncoderRepresentationsfromTransformers, yang berdasarkan seni bina Transformer dan mempunyai ciri pengekodan dwiarah. Berbanding dengan model pengekodan sehala tradisional, BERT boleh mempertimbangkan maklumat kontekstual pada masa yang sama semasa memproses teks, jadi ia berfungsi dengan baik dalam tugas pemprosesan bahasa semula jadi. Dwiarahnya membolehkan BERT memahami dengan lebih baik hubungan semantik dalam ayat, dengan itu meningkatkan keupayaan ekspresif model. Melalui kaedah pra-latihan dan penalaan halus, BERT boleh digunakan untuk pelbagai tugas pemprosesan bahasa semula jadi, seperti analisis sentimen, penamaan.

Fungsi pengaktifan memainkan peranan penting dalam pembelajaran mendalam Ia boleh memperkenalkan ciri tak linear ke dalam rangkaian saraf, membolehkan rangkaian belajar dengan lebih baik dan mensimulasikan hubungan input-output yang kompleks. Pemilihan dan penggunaan fungsi pengaktifan yang betul mempunyai kesan penting terhadap prestasi dan hasil latihan rangkaian saraf Artikel ini akan memperkenalkan empat fungsi pengaktifan yang biasa digunakan: Sigmoid, Tanh, ReLU dan Softmax, bermula dari pengenalan, senario penggunaan, kelebihan, kelemahan dan penyelesaian pengoptimuman Dimensi dibincangkan untuk memberi anda pemahaman yang menyeluruh tentang fungsi pengaktifan. 1. Fungsi Sigmoid Pengenalan kepada formula fungsi SIgmoid: Fungsi Sigmoid ialah fungsi tak linear yang biasa digunakan yang boleh memetakan sebarang nombor nyata antara 0 dan 1. Ia biasanya digunakan untuk menyatukan

Ditulis sebelum ini, hari ini kita membincangkan bagaimana teknologi pembelajaran mendalam boleh meningkatkan prestasi SLAM berasaskan penglihatan (penyetempatan dan pemetaan serentak) dalam persekitaran yang kompleks. Dengan menggabungkan kaedah pengekstrakan ciri dalam dan pemadanan kedalaman, di sini kami memperkenalkan sistem SLAM visual hibrid serba boleh yang direka untuk meningkatkan penyesuaian dalam senario yang mencabar seperti keadaan cahaya malap, pencahayaan dinamik, kawasan bertekstur lemah dan seks yang teruk. Sistem kami menyokong berbilang mod, termasuk konfigurasi monokular, stereo, monokular-inersia dan stereo-inersia lanjutan. Selain itu, ia juga menganalisis cara menggabungkan SLAM visual dengan kaedah pembelajaran mendalam untuk memberi inspirasi kepada penyelidikan lain. Melalui percubaan yang meluas pada set data awam dan data sampel sendiri, kami menunjukkan keunggulan SL-SLAM dari segi ketepatan kedudukan dan keteguhan penjejakan.

Pembenaman Ruang Terpendam (LatentSpaceEmbedding) ialah proses memetakan data berdimensi tinggi kepada ruang berdimensi rendah. Dalam bidang pembelajaran mesin dan pembelajaran mendalam, pembenaman ruang terpendam biasanya merupakan model rangkaian saraf yang memetakan data input berdimensi tinggi ke dalam set perwakilan vektor berdimensi rendah ini sering dipanggil "vektor terpendam" atau "terpendam pengekodan". Tujuan pembenaman ruang terpendam adalah untuk menangkap ciri penting dalam data dan mewakilinya ke dalam bentuk yang lebih ringkas dan mudah difahami. Melalui pembenaman ruang terpendam, kami boleh melakukan operasi seperti memvisualisasikan, mengelaskan dan mengelompokkan data dalam ruang dimensi rendah untuk memahami dan menggunakan data dengan lebih baik. Pembenaman ruang terpendam mempunyai aplikasi yang luas dalam banyak bidang, seperti penjanaan imej, pengekstrakan ciri, pengurangan dimensi, dsb. Pembenaman ruang terpendam adalah yang utama

Dalam gelombang perubahan teknologi yang pesat hari ini, Kecerdasan Buatan (AI), Pembelajaran Mesin (ML) dan Pembelajaran Dalam (DL) adalah seperti bintang terang, menerajui gelombang baharu teknologi maklumat. Ketiga-tiga perkataan ini sering muncul dalam pelbagai perbincangan dan aplikasi praktikal yang canggih, tetapi bagi kebanyakan peneroka yang baru dalam bidang ini, makna khusus dan hubungan dalaman mereka mungkin masih diselubungi misteri. Jadi mari kita lihat gambar ini dahulu. Dapat dilihat bahawa terdapat korelasi rapat dan hubungan progresif antara pembelajaran mendalam, pembelajaran mesin dan kecerdasan buatan. Pembelajaran mendalam ialah bidang khusus pembelajaran mesin dan pembelajaran mesin

Hampir 20 tahun telah berlalu sejak konsep pembelajaran mendalam dicadangkan pada tahun 2006. Pembelajaran mendalam, sebagai revolusi dalam bidang kecerdasan buatan, telah melahirkan banyak algoritma yang berpengaruh. Jadi, pada pendapat anda, apakah 10 algoritma teratas untuk pembelajaran mendalam? Berikut adalah algoritma teratas untuk pembelajaran mendalam pada pendapat saya Mereka semua menduduki kedudukan penting dari segi inovasi, nilai aplikasi dan pengaruh. 1. Latar belakang rangkaian saraf dalam (DNN): Rangkaian saraf dalam (DNN), juga dipanggil perceptron berbilang lapisan, adalah algoritma pembelajaran mendalam yang paling biasa Apabila ia mula-mula dicipta, ia dipersoalkan kerana kesesakan kuasa pengkomputeran tahun, kuasa pengkomputeran, Kejayaan datang dengan letupan data. DNN ialah model rangkaian saraf yang mengandungi berbilang lapisan tersembunyi. Dalam model ini, setiap lapisan menghantar input ke lapisan seterusnya dan

Langkah pemasangan: 1. Muat turun dan pasang Miniconda, pilih versi Miniconda yang sesuai mengikut sistem pengendalian, dan pasang mengikut panduan rasmi 2. Gunakan arahan "conda create -n tensorflow_env python=3.7" untuk mencipta persekitaran Conda baharu; ; 3. Aktifkan persekitaran Conda 4. Gunakan arahan "conda install tensorflow" untuk memasang versi terkini TensorFlow 5. Sahkan pemasangan.

Rangkaian Neural Konvolusi (CNN) dan Transformer ialah dua model pembelajaran mendalam berbeza yang telah menunjukkan prestasi cemerlang pada tugasan yang berbeza. CNN digunakan terutamanya untuk tugas penglihatan komputer seperti klasifikasi imej, pengesanan sasaran dan pembahagian imej. Ia mengekstrak ciri tempatan pada imej melalui operasi lilitan, dan melakukan pengurangan dimensi ciri dan invarian ruang melalui operasi pengumpulan. Sebaliknya, Transformer digunakan terutamanya untuk tugas pemprosesan bahasa semula jadi (NLP) seperti terjemahan mesin, klasifikasi teks dan pengecaman pertuturan. Ia menggunakan mekanisme perhatian kendiri untuk memodelkan kebergantungan dalam jujukan, mengelakkan pengiraan berjujukan dalam rangkaian saraf berulang tradisional. Walaupun kedua-dua model ini digunakan untuk tugasan yang berbeza, ia mempunyai persamaan dalam pemodelan jujukan, jadi
