Rumah pembangunan bahagian belakang Golang Golang melaksanakan rnn

Golang melaksanakan rnn

May 16, 2023 pm 06:31 PM

Dalam beberapa tahun kebelakangan ini, teknologi pembelajaran mendalam telah digunakan secara meluas dalam bidang sains komputer. Antaranya, rangkaian saraf berulang (RNN) adalah struktur penting, yang memainkan peranan penting dalam pemprosesan bahasa semula jadi, pengecaman pertuturan dan bidang lain.

Bagi pembangun Golang, melaksanakan RNN dalam bahasa ini adalah tugas penting. Oleh itu, artikel ini akan menerangkan secara terperinci pelaksanaan teknologi RNN di Golang. Artikel ini akan membincangkan aspek berikut:

  • Apakah itu RNN
  • Struktur RNN
  • teknologi RNN yang dilaksanakan oleh Golang
  • Kod contoh
  • Ringkasan

Apakah itu RNN

Rangkaian saraf berulang ialah rangkaian saraf dengan struktur kitaran. Berbanding dengan rangkaian saraf lain, RNN boleh mengendalikan data jenis jujukan. Contohnya, bahasa semula jadi, isyarat domain masa, dsb.

Struktur RNN

Struktur RNN sangat istimewa. Ia berbeza daripada rangkaian saraf lain kerana setiap neuron menerima input daripada output neuron sebelumnya. Dalam erti kata lain, RNN mengekalkan keadaan yang dikira sebelum ini semasa memproses data jujukan.

Secara khusus, struktur RNN adalah seperti yang ditunjukkan dalam rajah.

[Gambar]

Dapat dilihat bahawa RNN terutamanya mengandungi tiga bahagian: lapisan input, lapisan tersembunyi dan lapisan output. Antaranya, lapisan input digunakan untuk menerima data luaran, manakala lapisan tersembunyi digunakan untuk mengira dan mengedit keadaan semasa. Akhirnya, lapisan keluaran mengeluarkan hasil akhir.

Teknologi RNN yang dilaksanakan oleh Golang

Untuk menggunakan Golang bagi melaksanakan RNN, kita perlu terlebih dahulu memahami pengaturcaraan serentak dan teknologi pengaturcaraan rangkaian saraf dalam bahasa Go.

Untuk pengaturcaraan serentak, Go menyediakan ciri berkaitan goroutine dan saluran. Goroutine ialah benang ringan dalam bahasa Go. Ia menggunakan sumber memori yang sangat sedikit dan berjalan dengan sangat cekap. Saluran ialah teknologi komunikasi segerak yang boleh digunakan untuk memindahkan data antara goroutine yang berbeza.

Untuk teknologi pengaturcaraan rangkaian saraf, kita perlu memahami cara membina model rangkaian saraf dan cara menggunakan pengoptimum dan fungsi kehilangan.

Langkah khusus adalah seperti berikut:

  1. Tentukan struktur dan parameter RNN

Di Golang, kami mentakrifkan RNN sebagai struktur. Secara khusus, kita perlu menentukan saiz input dan output, saiz lapisan tersembunyi, saiz keadaan, dll.

  1. Tentukan algoritma perambatan hadapan dan perambatan belakang

Algoritma perambatan hadapan RNN mengira keputusan keadaan sebelumnya dan input semasa dan menghantarnya ke status lapisan seterusnya. Tujuan algoritma perambatan belakang adalah untuk mengira kerugian dan mengemas kini pemberat mengikut pengoptimum yang berbeza.

Di Golang, kita boleh menggunakan peraturan rantai untuk melaksanakan algoritma perambatan belakang. Kaedah pelaksanaan khusus adalah untuk mendapatkan fungsi kehilangan dahulu dan kemudian mengemas kini berat mengikut formula yang sepadan.

  1. Tentukan fungsi kehilangan dan pengoptimum

Entropi silang ialah fungsi kehilangan biasa, dan Adagrad ialah pengoptimum biasa. Di Golang, kita boleh menggunakan pakej matematik dalam perpustakaan standard untuk menentukan fungsi ini.

Kod Contoh

Berikut ialah kod sampel ringkas yang menunjukkan cara melaksanakan model RNN ringkas menggunakan Golang.

package main

import (
    "fmt"
    "math"
)

func sigmoid(x float64) float64 {
    //sigmoid 激活函数
    return 1 / (1 + math.Exp(-x))
}

type RNN struct {
    //RNN模型定义
    InputDim, HiddenDim, OutputDim, StateDim int
    InputWeight, HiddenWeight, OutputWeight [][]float64
}

func NewRNN(inputDim, hiddenDim, outputDim, stateDim int) *RNN {
    rnn := &RNN{}
    rnn.InputDim = inputDim
    rnn.HiddenDim = hiddenDim
    rnn.OutputDim = outputDim
    rnn.StateDim = stateDim
    rnn.InputWeight = make([][]float64, inputDim)
    for i := range rnn.InputWeight {
        rnn.InputWeight[i] = make([]float64, hiddenDim)
    }
    rnn.HiddenWeight = make([][]float64, hiddenDim)
    for i := range rnn.HiddenWeight {
        rnn.HiddenWeight[i] = make([]float64, hiddenDim)
    }
    rnn.OutputWeight = make([][]float64, hiddenDim)
    for i := range rnn.OutputWeight {
        rnn.OutputWeight[i] = make([]float64, outputDim)
    }
    return rnn
}

func (rnn *RNN) Forward(input []float64) ([]float64, [][]float64) {
    h := make([]float64, rnn.HiddenDim)
    state := make([]float64, rnn.StateDim)
    output := make([]float64, rnn.OutputDim)
    //前向传播
    for i := 0; i < rnn.HiddenDim; i++ {
        for j := 0; j < rnn.InputDim; j++ {
            h[i] += input[j] * rnn.InputWeight[j][i]
        }
        for j := 0; j < rnn.HiddenDim; j++ {
            h[i] += state[j] * rnn.HiddenWeight[j][i]
        }
        h[i] = sigmoid(h[i])
    }
    for i := 0; i < rnn.OutputDim; i++ {
        for j := 0; j < rnn.HiddenDim; j++ {
            output[i] += h[j] * rnn.OutputWeight[j][i]
        }
    }
    return output, [][]float64{nil, nil, nil}
}

func (rnn *RNN) Backward(input []float64, target []float64) [][]float64 {
    h := make([]float64, rnn.HiddenDim)
    state := make([]float64, rnn.StateDim)
    output := make([]float64, rnn.OutputDim)
    delta := make([]float64, rnn.OutputDim)
    deltaH := make([]float64, rnn.HiddenDim)
    //计算损失
    loss := 0.0
    for i := 0; i < rnn.OutputDim; i++ {
        loss += math.Pow(target[i]-output[i], 2)
        delta[i] = target[i] - output[i]
    }
    gradInput := make([]float64, rnn.InputDim)
    gradInputWeight := make([][]float64, rnn.InputDim)
    for i := range gradInputWeight {
        gradInputWeight[i] = make([]float64, rnn.HiddenDim)
    }
    gradHiddenWeight := make([][]float64, rnn.HiddenDim)
    for i := range gradHiddenWeight {
        gradHiddenWeight[i] = make([]float64, rnn.HiddenDim)
    }
    gradOutputWeight := make([][]float64, rnn.HiddenDim)
    for i := range gradOutputWeight {
        gradOutputWeight[i] = make([]float64, rnn.OutputDim)
    }
    //反向传播
    for i := 0; i < rnn.OutputDim; i++ {
        for j := 0; j < rnn.HiddenDim; j++ {
            gradOutputWeight[j][i] = h[j] * delta[i]
            deltaH[j] += delta[i] * rnn.OutputWeight[j][i]
        }
    }
    for i := 0; i < rnn.HiddenDim; i++ {
        deltaH[i] *= h[i] * (1 - h[i])
        for j := 0; j < rnn.HiddenDim; j++ {
            gradHiddenWeight[j][i] = state[j] * deltaH[i]
            if i == 0 {
                gradInput[j] = input[j] * deltaH[0]
                for k := 0; k < rnn.HiddenDim; k++ {
                    gradInputWeight[j][k] = input[j] * deltaH[0] * h[k]
                }
            }
        }
        for j := 0; j < rnn.StateDim; j++ {
            state[j] = deltaH[i] * rnn.HiddenWeight[j][i]
        }
    }
    return [][]float64{gradInput, gradInputWeight, gradHiddenWeight, gradOutputWeight}
}

func main() {
    //定义RNN模型
    rnn := NewRNN(2, 2, 1, 2)
    rnn.InputWeight[0][0] = 0.5
    rnn.InputWeight[0][1] = 0.2
    rnn.InputWeight[1][0] = 0.1
    rnn.InputWeight[1][1] = 0.3
    rnn.HiddenWeight[0][0] = 0.4
    rnn.HiddenWeight[0][1] = 0.4
    rnn.HiddenWeight[1][0] = 0.5
    rnn.HiddenWeight[1][1] = 0.5
    rnn.OutputWeight[0][0] = 0.6
    rnn.OutputWeight[1][0] = 0.7
    //前向传播和反向传播
    output, _ := rnn.Forward([]float64{0.2, 0.4})
    fmt.Println("Output:", output)
    grad := rnn.Backward([]float64{0.2, 0.4}, []float64{0.9})
    fmt.Println("Grad:", grad)
}
Salin selepas log masuk

Ringkasan

Artikel ini memperkenalkan teknologi Golang untuk melaksanakan model RNN. Langkah-langkah daripada struktur asas dan penggunaan RNN hingga pelaksanaan Golang diterangkan. Pada masa yang sama, kami juga memperkenalkan kod sampel supaya pembangun boleh merujuknya untuk amalan. Hari ini, Golang telah menjadi bahasa pengaturcaraan yang popular Adalah dipercayai bahawa didorong oleh era data besar, sumbangan teknikal Golang untuk melaksanakan model RNN akan menjadi lebih besar dan lebih besar.

Atas ialah kandungan terperinci Golang melaksanakan rnn. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Apakah kelemahan debian openssl Apakah kelemahan debian openssl Apr 02, 2025 am 07:30 AM

OpenSSL, sebagai perpustakaan sumber terbuka yang digunakan secara meluas dalam komunikasi yang selamat, menyediakan algoritma penyulitan, kunci dan fungsi pengurusan sijil. Walau bagaimanapun, terdapat beberapa kelemahan keselamatan yang diketahui dalam versi sejarahnya, yang sebahagiannya sangat berbahaya. Artikel ini akan memberi tumpuan kepada kelemahan umum dan langkah -langkah tindak balas untuk OpenSSL dalam sistem Debian. Debianopenssl yang dikenal pasti: OpenSSL telah mengalami beberapa kelemahan yang serius, seperti: Kerentanan Pendarahan Jantung (CVE-2014-0160): Kelemahan ini mempengaruhi OpenSSL 1.0.1 hingga 1.0.1f dan 1.0.2 hingga 1.0.2 versi beta. Penyerang boleh menggunakan kelemahan ini untuk maklumat sensitif baca yang tidak dibenarkan di pelayan, termasuk kunci penyulitan, dll.

Bagaimana anda menggunakan alat PPROF untuk menganalisis prestasi GO? Bagaimana anda menggunakan alat PPROF untuk menganalisis prestasi GO? Mar 21, 2025 pm 06:37 PM

Artikel ini menerangkan cara menggunakan alat PPROF untuk menganalisis prestasi GO, termasuk membolehkan profil, mengumpul data, dan mengenal pasti kesesakan biasa seperti CPU dan isu memori.

Bagaimana anda menulis ujian unit di GO? Bagaimana anda menulis ujian unit di GO? Mar 21, 2025 pm 06:34 PM

Artikel ini membincangkan ujian unit menulis di GO, meliputi amalan terbaik, teknik mengejek, dan alat untuk pengurusan ujian yang cekap.

Perpustakaan apa yang digunakan untuk operasi nombor terapung di GO? Perpustakaan apa yang digunakan untuk operasi nombor terapung di GO? Apr 02, 2025 pm 02:06 PM

Perpustakaan yang digunakan untuk operasi nombor terapung dalam bahasa Go memperkenalkan cara memastikan ketepatannya ...

Apakah masalah dengan thread giliran di crawler colly go? Apakah masalah dengan thread giliran di crawler colly go? Apr 02, 2025 pm 02:09 PM

Masalah Threading Giliran di GO Crawler Colly meneroka masalah menggunakan Perpustakaan Colly Crawler dalam bahasa Go, pemaju sering menghadapi masalah dengan benang dan permintaan beratur. � ...

Bagaimana anda menggunakan ujian yang didorong oleh jadual di GO? Bagaimana anda menggunakan ujian yang didorong oleh jadual di GO? Mar 21, 2025 pm 06:35 PM

Artikel ini membincangkan menggunakan ujian yang didorong oleh jadual di GO, satu kaedah yang menggunakan jadual kes ujian untuk menguji fungsi dengan pelbagai input dan hasil. Ia menyoroti faedah seperti kebolehbacaan yang lebih baik, penurunan duplikasi, skalabiliti, konsistensi, dan a

Terangkan tujuan Pakej Refleksi Go. Bilakah anda akan menggunakan refleksi? Apakah implikasi prestasi? Terangkan tujuan Pakej Refleksi Go. Bilakah anda akan menggunakan refleksi? Apakah implikasi prestasi? Mar 25, 2025 am 11:17 AM

Artikel ini membincangkan pakej GO's Reflect, yang digunakan untuk manipulasi kod runtime, bermanfaat untuk siri, pengaturcaraan generik, dan banyak lagi. Ia memberi amaran tentang kos prestasi seperti pelaksanaan yang lebih perlahan dan penggunaan memori yang lebih tinggi, menasihati penggunaan yang bijak dan terbaik

Bagaimana anda menentukan kebergantungan dalam fail go.mod anda? Bagaimana anda menentukan kebergantungan dalam fail go.mod anda? Mar 27, 2025 pm 07:14 PM

Artikel ini membincangkan menguruskan kebergantungan modul Go melalui Go.Mod, meliputi spesifikasi, kemas kini, dan resolusi konflik. Ia menekankan amalan terbaik seperti versi semantik dan kemas kini biasa.

See all articles