Rumah pembangunan bahagian belakang tutorial php Bagaimana untuk melaksanakan pengecaman dan sintesis pertuturan berasaskan pembelajaran mendalam dalam PHP?

Bagaimana untuk melaksanakan pengecaman dan sintesis pertuturan berasaskan pembelajaran mendalam dalam PHP?

May 20, 2023 pm 10:31 PM
php pembelajaran yang mendalam Pengecaman dan sintesis pertuturan

Dalam beberapa dekad yang lalu, teknologi suara telah berkembang pesat, yang memberikan kemudahan yang hebat kepada orang ramai, seperti pengecaman suara, sintesis pertuturan, dsb. Pada masa kini, dengan perkembangan pesat teknologi AI, pembelajaran mendalam telah menjadi kaedah arus perdana teknologi pertuturan, dan secara beransur-ansur menggantikan kaedah pengecaman dan sintesis pertuturan berasaskan peraturan tradisional. Sebagai bahasa pengaturcaraan yang digunakan secara meluas, bagaimanakah PHP boleh menggunakan pembelajaran mendalam untuk pengecaman dan sintesis pertuturan? Artikel ini akan memperkenalkan secara terperinci cara melakukan pengecaman dan sintesis pertuturan berdasarkan pembelajaran mendalam dalam PHP.

1. Asas pembelajaran mendalam

Pembelajaran mendalam ialah kaedah pembelajaran mesin, yang terasnya ialah rangkaian saraf berbilang lapisan. Berbeza daripada rangkaian cetek tradisional, pembelajaran mendalam mempunyai keupayaan pengekstrakan dan pengabstrakan ciri berbilang lapisan, serta boleh memproses data berskala besar dan mengekstrak maklumat penting dengan cepat. Dalam bidang pengecaman dan sintesis pertuturan, pembangunan pembelajaran mendalam telah banyak meningkatkan ketepatan pengecaman dan sintesis pertuturan.

2. Pengecaman pertuturan

  1. Pengumpulan dan prapemprosesan data

Sebelum pengecaman pertuturan, kami perlu mengumpul sejumlah data pertuturan dan melakukan prapemprosesan. Tugas prapemprosesan termasuk pengurangan hingar isyarat, pengekstrakan ciri, dsb. Antaranya, tujuan pengurangan hingar isyarat adalah untuk menghilangkan gangguan bunyi dalam isyarat pertuturan yang biasa digunakan termasuk penolakan spektrum, algoritma penapisan Wiener, dsb. Tujuan pengekstrakan ciri adalah untuk menukar isyarat pertuturan ke dalam bentuk yang boleh dikenali oleh rangkaian saraf Algoritma pengekstrakan ciri yang biasa digunakan ialah algoritma MFCC.

  1. Membina model

Membina model ialah kandungan teras pengecaman pertuturan Kita boleh menggunakan rangkaian neural konvolusi (CNN) atau rangkaian saraf berulang (RNN) dalam pembelajaran yang mendalam untuk mencapai pengecaman pertuturan. Antaranya, CNN sesuai untuk mengenal pasti isyarat jangka pendek dalam pertuturan, manakala RNN sesuai untuk memproses isyarat jujukan jangka panjang.

  1. Melatih model

Selepas model ditubuhkan, kita perlu melatih dan melaraskan parameter model secara berterusan melalui algoritma perambatan belakang supaya model dapat mengenali pertuturan dengan tepat isyarat. Model latihan memerlukan banyak sumber dan masa pengkomputeran, dan rangka kerja pembelajaran mendalam seperti TensorFlow boleh membantu kami menyelesaikan tugas ini.

  1. Pengujian dan Pengoptimuman

Selepas latihan selesai, kami perlu menguji dan mengoptimumkan model. Semasa ujian, data pertuturan yang belum dilatih oleh model digunakan untuk pengecaman, dan kesan model diuji melalui penunjuk penilaian seperti ketepatan dan ingat semula. Semasa pengoptimuman, model dan parameter perlu dilaraskan untuk meningkatkan ketepatan dan keteguhan pengecamannya.

3. Sintesis pertuturan

  1. Pengumpulan dan prapemprosesan data

Sama seperti pengecaman pertuturan, sejumlah besar data pertuturan juga perlu dikumpul sebelum pertuturan sintesis dan melakukan prapemprosesan. Tugas prapemprosesan termasuk pengurangan hingar isyarat, penyingkiran jeda suku kata, dsb. Pada masa yang sama, kita juga perlu melabelkan data pertuturan untuk membina model.

  1. Membina model

Membina model ialah kandungan teras sintesis pertuturan Kita boleh menggunakan rangkaian adversarial generatif (GAN) atau pengekod auto variasi (VAE) secara mendalam pembelajaran. ) untuk melaksanakan sintesis pertuturan. Antaranya, GAN boleh menjana isyarat pertuturan yang realistik, tetapi memerlukan masa latihan yang panjang manakala VAE boleh mencapai sintesis pertuturan yang pantas, tetapi kualiti bunyi yang disintesisnya mungkin kurang baik.

  1. Melatih model

Sama seperti pengecaman pertuturan, sintesis pertuturan memerlukan banyak sumber dan masa pengkomputeran, dan algoritma perambatan belakang perlu digunakan untuk melaraskan model secara berterusan parameter untuk menjadikannya Mampu menjana isyarat pertuturan yang realistik. Pada masa yang sama, kita boleh mencapai kesan sintesis yang berbeza dengan mengawal input model.

  1. Pengujian dan Pengoptimuman

Sama seperti pengecaman pertuturan, sintesis pertuturan juga memerlukan ujian dan pengoptimuman. Semasa ujian, pendengaran buatan dan kaedah lain perlu digunakan untuk menilai kualiti dan ketepatan bunyi yang disintesis semasa pengoptimuman, model dan parameter perlu dilaraskan untuk meningkatkan kesan sintesis dan keteguhannya.

Ringkasnya, pengecaman pertuturan dan sintesis berdasarkan pembelajaran mendalam telah digunakan secara meluas dalam PHP. Sama ada ia mengoptimumkan pengalaman pengguna atau meningkatkan kecekapan kerja, teknologi suara akan memainkan peranan yang semakin penting dalam pembangunan masa depan.

Atas ialah kandungan terperinci Bagaimana untuk melaksanakan pengecaman dan sintesis pertuturan berasaskan pembelajaran mendalam dalam PHP?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Panduan Pemasangan dan Naik Taraf PHP 8.4 untuk Ubuntu dan Debian Panduan Pemasangan dan Naik Taraf PHP 8.4 untuk Ubuntu dan Debian Dec 24, 2024 pm 04:42 PM

PHP 8.4 membawa beberapa ciri baharu, peningkatan keselamatan dan peningkatan prestasi dengan jumlah penamatan dan penyingkiran ciri yang sihat. Panduan ini menerangkan cara memasang PHP 8.4 atau naik taraf kepada PHP 8.4 pada Ubuntu, Debian, atau terbitan mereka

Bincangkan CakePHP Bincangkan CakePHP Sep 10, 2024 pm 05:28 PM

CakePHP ialah rangka kerja sumber terbuka untuk PHP. Ia bertujuan untuk menjadikan pembangunan, penggunaan dan penyelenggaraan aplikasi lebih mudah. CakePHP adalah berdasarkan seni bina seperti MVC yang berkuasa dan mudah difahami. Model, Pandangan dan Pengawal gu

Muat naik Fail CakePHP Muat naik Fail CakePHP Sep 10, 2024 pm 05:27 PM

Untuk mengusahakan muat naik fail, kami akan menggunakan pembantu borang. Di sini, adalah contoh untuk muat naik fail.

Cara Menyediakan Kod Visual Studio (Kod VS) untuk Pembangunan PHP Cara Menyediakan Kod Visual Studio (Kod VS) untuk Pembangunan PHP Dec 20, 2024 am 11:31 AM

Kod Visual Studio, juga dikenali sebagai Kod VS, ialah editor kod sumber percuma — atau persekitaran pembangunan bersepadu (IDE) — tersedia untuk semua sistem pengendalian utama. Dengan koleksi sambungan yang besar untuk banyak bahasa pengaturcaraan, Kod VS boleh menjadi c

Panduan Ringkas CakePHP Panduan Ringkas CakePHP Sep 10, 2024 pm 05:27 PM

CakePHP ialah rangka kerja MVC sumber terbuka. Ia menjadikan pembangunan, penggunaan dan penyelenggaraan aplikasi lebih mudah. CakePHP mempunyai beberapa perpustakaan untuk mengurangkan beban tugas yang paling biasa.

Bagaimana anda menghuraikan dan memproses HTML/XML dalam PHP? Bagaimana anda menghuraikan dan memproses HTML/XML dalam PHP? Feb 07, 2025 am 11:57 AM

Tutorial ini menunjukkan cara memproses dokumen XML dengan cekap menggunakan PHP. XML (bahasa markup extensible) adalah bahasa markup berasaskan teks yang serba boleh yang direka untuk pembacaan manusia dan parsing mesin. Ia biasanya digunakan untuk penyimpanan data

Jelaskan JSON Web Tokens (JWT) dan kes penggunaannya dalam PHP API. Jelaskan JSON Web Tokens (JWT) dan kes penggunaannya dalam PHP API. Apr 05, 2025 am 12:04 AM

JWT adalah standard terbuka berdasarkan JSON, yang digunakan untuk menghantar maklumat secara selamat antara pihak, terutamanya untuk pengesahan identiti dan pertukaran maklumat. 1. JWT terdiri daripada tiga bahagian: header, muatan dan tandatangan. 2. Prinsip kerja JWT termasuk tiga langkah: menjana JWT, mengesahkan JWT dan muatan parsing. 3. Apabila menggunakan JWT untuk pengesahan di PHP, JWT boleh dijana dan disahkan, dan peranan pengguna dan maklumat kebenaran boleh dimasukkan dalam penggunaan lanjutan. 4. Kesilapan umum termasuk kegagalan pengesahan tandatangan, tamat tempoh, dan muatan besar. Kemahiran penyahpepijatan termasuk menggunakan alat debugging dan pembalakan. 5. Pengoptimuman prestasi dan amalan terbaik termasuk menggunakan algoritma tandatangan yang sesuai, menetapkan tempoh kesahihan dengan munasabah,

Program PHP untuk mengira vokal dalam rentetan Program PHP untuk mengira vokal dalam rentetan Feb 07, 2025 pm 12:12 PM

Rentetan adalah urutan aksara, termasuk huruf, nombor, dan simbol. Tutorial ini akan mempelajari cara mengira bilangan vokal dalam rentetan yang diberikan dalam PHP menggunakan kaedah yang berbeza. Vokal dalam bahasa Inggeris adalah a, e, i, o, u, dan mereka boleh menjadi huruf besar atau huruf kecil. Apa itu vokal? Vokal adalah watak abjad yang mewakili sebutan tertentu. Terdapat lima vokal dalam bahasa Inggeris, termasuk huruf besar dan huruf kecil: a, e, i, o, u Contoh 1 Input: String = "TutorialSpoint" Output: 6 menjelaskan Vokal dalam rentetan "TutorialSpoint" adalah u, o, i, a, o, i. Terdapat 6 yuan sebanyak 6

See all articles