Pemasangan dan penggunaan penapis Bloom (BloomFilter) untuk Redis 5.x pada Centos7
1 进入redis安装目录:cd /usr/local/redis-5.0.4 2. 下载插件: git clone https://github.com/RedisBloom/RedisBloom.git # https://github.com/RedisBloom/RedisBloom 如果慢 可以使用外网访问 3. 进入插件目录: cd redisbloom/ (重命名之前为RedisBloom) 4. 执行: make 5. 修改 redis.conf,增加配置: loadmodule /usr/local/redis-5.0.4/redisbloom/redisbloom.so 6. 启动redis: src/redis-server ./redis.conf 7. 连接客户端: src/redis-cli -p 6379 8. 测试,先后执行: bf.add users francis bf.exists users francis 9. 更多内容可参考: https://oss.redislabs.com/redisbloom/
Penggunaan python
1 untuk menyambung ke redis Gunakan pernyataan asli untuk menggunakan
from redis import StrictRedis from django.conf import settings class BfRedis: def __init__(self, db, host=settings.BF_REDIS_HOST, port=settings.BF_REDIS_PORT, password=settings.BF_REDIS_PASSWORD): self.client = StrictRedis(db=db, host=host, port=port, password=password) def bf_init(self, key: str, error_rate: float(), size: int): res = self.client.execute_command('BF.RESERVE', key, error_rate, size) return res def bf_exists(self, key, value): res = self.client.execute_command('BF.exists', key, value) return res def bf_add(self, key, value): return self.client.execute_command('BF.add', key, value) def bf_local_init(self, task_id, error_rate=0.0001, size=10000): """ """ key = f'bf_{task_id}' if self.client.exists(key): return True res = self.bf_init(key, error_rate, size) return res def bf_local_add(self, task_id, value): key = f'bf_{task_id}' res = self.bf_add(key, value) return res def bf_local_exists(self, task_id, value): key = f'bf_{task_id}' res = self.bf_exists(key, value) return res def bf_local_del(self, task_id): key = f'bf_{task_id}' res = self.client.delete(key) return res # bf_redis = CrawlRedisClient(0)
Gunakan modul alat python
python2安装:pip install pybloom python3安装:pip install pybloom-live
demo
from pybloom import BloomFilter, ScalableBloomFilter bf = BloomFilter(capacity=10000, error_rate=0.001) bf.add('test') print 'test' in bf sbf = ScalableBloomFilter(mode=ScalableBloomFilter.SMALL_SET_GROWTH) sbf.add('dddd') print 'ddd' in sbf
BloomFilter
ialah 定容的过滤器
, kadar_ralat bermakna kadar positif palsu maksimum ialah 0.1% dan ScalableBloomFilter
ialah 不定容量的布隆过滤器
, yang boleh menambah unsur secara berterusan. add
Kaedahnya adalah untuk menambah elemen Jika elemen itu sudah berada dalam penapis mekar, ia akan mengembalikan benar. Untuk menentukan sama ada elemen berada dalam penapis, hanya gunakan operator dalam.
Atas ialah kandungan terperinci Pemasangan Redis5 BloomFilter di bawah mac dan cara menggunakannya dengan python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!