


Apakah penyelesaian untuk penyegerakan data MySQL dengan Elasticsearch?
Carian Produk
Semua orang sepatutnya telah mencari produk di pelbagai tapak web e-dagang Bagaimana anda biasanya mencari produk? Enjin carian Elasticsearch.
Kemudian soalan muncul apabila produk diletakkan di rak, data secara amnya ditulis ke dalam pangkalan data MySQL. Jadi, bagaimanakah data yang digunakan untuk mendapatkan semula disegerakkan ke Elasticsearch?
Penyegerakan MySQL ES
1 Tulis dua kali segerak
Ini adalah cara paling langsung yang boleh dibayangkan, apabila menulis ke MySQL, Secara langsung dan tulis salinan data secara serentak ke ES.
Tulisan dwi segerak
Untuk kaedah ini:
Kelebihan: Pelaksanaan yang mudah
Kelemahan:
Gandingan perniagaan, menggandingkan sejumlah besar kod penyegerakan data dalam pengurusan produk
menjejaskan prestasi, menulis kepada dua storan dan masa tindak balas menjadi lebih lama
Menyusahkan untuk dikembangkan: Carian mungkin mempunyai beberapa keperluan yang diperibadikan, yang memerlukan pengagregatan data Kaedah ini menyusahkan untuk dilaksanakan
2
Kami juga mudah memikirkan tulisan berganda tak segerak Apabila menyenaraikan produk, kami mula-mula membuang data produk ke dalam MQ Untuk memahami gandingan, kami biasanya memisahkan perkhidmatan carian dan perkhidmatan carian melanggan berita perubahan produk untuk menyelesaikan penyegerakan.
Tulisan berganda tak segerak
Seperti yang dinyatakan sebelum ini, apakah yang perlu saya lakukan jika sesetengah data perlu diagregatkan ke dalam struktur yang serupa dengan jadual lebar? Sebagai contoh, kategori produk, spu dan jadual sku pustaka produk dipisahkan, tetapi pertanyaan adalah merentas dimensi Ia akan menjadi kurang cekap untuk mengagregatkannya semula dalam ES Adalah lebih baik untuk mengagregatkan data produk dan menggunakannya dalam ES dengan cara yang sama Ia disimpan dalam bentuk jadual lebar, supaya kecekapan pertanyaan lebih tinggi.
Pertanyaan berbilang dimensi dan berbilang syarat
Sebenarnya tiada cara yang baik untuk melakukan ini Pada asasnya, anda masih perlu mencari perkhidmatan untuk menyemak pangkalan data secara terus, atau memanggilnya dari jauh dan tanya pangkalan data produk sekali lagi, yang dipanggil semakan balik.
Semak untuk melengkapkan pengagregatan
Cara ini:
Kelebihan:
Gandingan Penyelesaian , barangan dan perkhidmatan tidak perlu memberi perhatian kepada penyegerakan data
Prestasi masa nyata yang baik, menggunakan MQ, dalam keadaan biasa, penyegerakan selesai dalam beberapa saat
Kelemahan :
Memperkenalkan komponen dan perkhidmatan baharu, meningkatkan kerumitan
3 kita mahu Cepat semak, jumlah data tidak begitu besar, apa yang perlu saya lakukan? Tugas berjadual juga tersedia.
Tugas berjadual
Perkara yang paling menyusahkan tentang tugasan berjadual ialah kekerapannya sukar untuk dipilih Jika kekerapannya tinggi, ia akan membentuk perniagaan secara luar biasa puncak, mengakibatkan penggunaan storan CPU dan memori meningkat dalam kemuncak Jika frekuensi rendah, prestasi masa nyata adalah lemah, dan terdapat juga puncak.
Kaedah ini:
Kebaikan: pelaksanaan yang agak mudah
Kelemahan:
- Prestasi masa nyata sukar untuk dijamin
- Memberi tekanan hebat pada storan
- 4. Langganan data
Terdapat cara lain, iaitu langganan data yang paling popular.
MySQL mencapai penyegerakan induk-hamba melalui langganan binlog Pelbagai rangka kerja langganan data seperti terusan menggunakan prinsip ini untuk menyamar komponen klien sebagai perpustakaan hamba untuk melaksanakan langganan data.
Penyegerakan master-slave MySQL
Mari kita ambil terusan yang paling banyak digunakan sebagai contoh yang menyokong pelbagai penyesuai melalui
, termasuk ES Selepas penyesuai dimulakan dengan beberapa konfigurasi, ia boleh terus menyegerakkan data MySQL ke ES Proses ini adalah kod sifar.canal-adapter
data penyegerakan terusan
Walaupun kami mengikut cadangan bos dan menggunakan terusan untuk kerja penyegerakan, kami sebenarnya masih perlu menulis kod. kenapa?
Disebabkan sokongan saluran yang terhad, pengagregatan data berbilang jadual yang dinyatakan di atas masih perlu dilaksanakan melalui semakan. Pada masa ini, adalah tidak sesuai untuk menggunakan penyesuai saluran Anda perlu melaksanakan pelanggan terusan sendiri, memantau dan mengagregat data dan menulis kepada ES:
Langganan data. + ulasan
Ini kelihatan serupa dengan penulisan berganda tak segerak, tetapi pertama sekali ia mengurangkan gandingan produk dan perkhidmatan, dan kedua sifat masa nyata data adalah lebih baik.
Jadi gunakan langganan data:
Kelebihan:
- Kurang pencerobohan perniagaan
- Lebih masa nyata Baik
Bagi pemilihan rangka kerja langganan data, yang arus perdana secara amnya adalah seperti berikut:
Cancal | Maxwell | Python-Mysql-Rplication | |
---|---|---|---|
开源方 | 阿里巴巴 | Zendesk | 社区 |
开发语言 | Java | Java | Python |
活跃度 | 活跃 | 活跃 | 活跃 |
高可用 | 支持 | 支持 | 不支持 |
客户端 | Java/Go/PHP/Python/Rust | 无 | Python |
消息落地 | Kafka/RocketMQ 等 | Kafka/RabbitNQ/Redis 等 | 自定义 |
消息格式 | 自定义 | JSON | 自定义 |
文档详略 | 详细 | 详细 | 详细 |
Boostrap | 不支持 | 支持 | 不支持 |
MySQL menyegerakkan ke stor data lain, seperti HBase, pada asasnya menggunakan kaedah yang serupa Beberapa kaedah.
Atas ialah kandungan terperinci Apakah penyelesaian untuk penyegerakan data MySQL dengan Elasticsearch?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



MySQL sesuai untuk pemula kerana mudah dipasang, kuat dan mudah untuk menguruskan data. 1. Pemasangan dan konfigurasi mudah, sesuai untuk pelbagai sistem operasi. 2. Menyokong operasi asas seperti membuat pangkalan data dan jadual, memasukkan, menanyakan, mengemas kini dan memadam data. 3. Menyediakan fungsi lanjutan seperti menyertai operasi dan subqueries. 4. Prestasi boleh ditingkatkan melalui pengindeksan, pengoptimuman pertanyaan dan pembahagian jadual. 5. Sokongan sokongan, pemulihan dan langkah keselamatan untuk memastikan keselamatan data dan konsistensi.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka. 1) Buat Pangkalan Data dan Jadual: Gunakan perintah Createdatabase dan Createtable. 2) Operasi Asas: Masukkan, Kemas kini, Padam dan Pilih. 3) Operasi lanjutan: Sertai, subquery dan pemprosesan transaksi. 4) Kemahiran Debugging: Semak sintaks, jenis data dan keizinan. 5) Cadangan Pengoptimuman: Gunakan indeks, elakkan pilih* dan gunakan transaksi.

Anda boleh membuka phpmyadmin melalui langkah -langkah berikut: 1. Log masuk ke panel kawalan laman web; 2. Cari dan klik ikon phpmyadmin; 3. Masukkan kelayakan MySQL; 4. Klik "Login".

Buat pangkalan data menggunakan Navicat Premium: Sambungkan ke pelayan pangkalan data dan masukkan parameter sambungan. Klik kanan pada pelayan dan pilih Buat Pangkalan Data. Masukkan nama pangkalan data baru dan set aksara yang ditentukan dan pengumpulan. Sambung ke pangkalan data baru dan buat jadual dalam penyemak imbas objek. Klik kanan di atas meja dan pilih masukkan data untuk memasukkan data.

MySQL dan SQL adalah kemahiran penting untuk pemaju. 1.MYSQL adalah sistem pengurusan pangkalan data sumber terbuka, dan SQL adalah bahasa standard yang digunakan untuk mengurus dan mengendalikan pangkalan data. 2.MYSQL menyokong pelbagai enjin penyimpanan melalui penyimpanan data yang cekap dan fungsi pengambilan semula, dan SQL melengkapkan operasi data yang kompleks melalui pernyataan mudah. 3. Contoh penggunaan termasuk pertanyaan asas dan pertanyaan lanjutan, seperti penapisan dan penyortiran mengikut keadaan. 4. Kesilapan umum termasuk kesilapan sintaks dan isu -isu prestasi, yang boleh dioptimumkan dengan memeriksa penyataan SQL dan menggunakan perintah menjelaskan. 5. Teknik pengoptimuman prestasi termasuk menggunakan indeks, mengelakkan pengimbasan jadual penuh, mengoptimumkan operasi menyertai dan meningkatkan kebolehbacaan kod.

Anda boleh membuat sambungan MySQL baru di Navicat dengan mengikuti langkah -langkah: Buka aplikasi dan pilih Sambungan Baru (Ctrl N). Pilih "MySQL" sebagai jenis sambungan. Masukkan nama host/alamat IP, port, nama pengguna, dan kata laluan. (Pilihan) Konfigurasikan pilihan lanjutan. Simpan sambungan dan masukkan nama sambungan.

Memulihkan baris yang dipadam secara langsung dari pangkalan data biasanya mustahil melainkan ada mekanisme sandaran atau transaksi. Titik Utama: Rollback Transaksi: Jalankan balik balik sebelum urus niaga komited untuk memulihkan data. Sandaran: Sandaran biasa pangkalan data boleh digunakan untuk memulihkan data dengan cepat. Snapshot Pangkalan Data: Anda boleh membuat salinan bacaan pangkalan data dan memulihkan data selepas data dipadam secara tidak sengaja. Gunakan Pernyataan Padam dengan berhati -hati: Periksa syarat -syarat dengan teliti untuk mengelakkan data yang tidak sengaja memadamkan. Gunakan klausa WHERE: Secara jelas menentukan data yang akan dipadam. Gunakan Persekitaran Ujian: Ujian Sebelum Melaksanakan Operasi Padam.

Redis menggunakan satu seni bina berulir untuk memberikan prestasi tinggi, kesederhanaan, dan konsistensi. Ia menggunakan I/O multiplexing, gelung acara, I/O yang tidak menyekat, dan memori bersama untuk meningkatkan keserasian, tetapi dengan batasan batasan konkurensi, satu titik kegagalan, dan tidak sesuai untuk beban kerja yang berintensifkan.
