


Bagaimana untuk melaksanakan klasifikasi dan visualisasi nod dalam python berdasarkan Node2Vec
Pengenalan
Node2vec ialah kaedah untuk pembenaman graf yang boleh digunakan untuk tugas seperti pengelasan nod, penemuan komuniti dan ramalan sambungan.
Proses pelaksanaan
Memuatkan set data
Mula-mula, mari kita muatkan perpustakaan Python yang diperlukan dan laksanakan kod berikut untuk memuatkan set data Cora:
import networkx as nx import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.manifold import TSNE from node2vec import Node2Vec # 加载Cora数据集 cora = pd.read_csv('cora/cora.content', sep='\t', header=None) cited_in = pd.read_csv('cora/cora.cites', sep='\t', header=None, names=['target', 'source']) nodes, features = cora.iloc[:, :-1], cora.iloc[:, -1]
Antaranya, cora.content
mengandungi semua maklumat ciri nod, dengan jumlah 2708 nod dan 1433 ciri dan cora.cites
mewujudkan hubungan tepi terarah antara nod melalui pemetaan petikan untuk setiap nod, dengan jumlah 5429 tepi. Seterusnya, kita perlu menggabungkan ciri nod dan maklumat rujukan untuk membina struktur graf.
# 定义函数:构造基于Cora数据集的图结构 def create_graph(nodes, features, cited_in): nodes.index = nodes.index.map(str) graph = nx.from_pandas_edgelist(cited_in, source='source', target='target') for index, row in nodes.iterrows(): node_id = str(row[0]) features = row.drop(labels=[0]) node_attrs = {f'attr_{i}': float(x) for i, x in enumerate(features)} if graph.has_node(node_id) == True: temp = graph.nodes[node_id] temp.update(node_attrs) graph.add_nodes_from([(node_id, temp)]) else: graph.add_nodes_from([(node_id, node_attrs)]) return graph # 构建图 graph = create_graph(nodes, features, cited_in)
Fungsi ini menyepadukan ciri nod dalam cora.content
dengan tepi terarah cora.cites
dan menandakannya pada graf. Kini kami telah membina paparan grafik yang membolehkan kami menggambarkan idea kami.
Membenamkan data menggunakan Node2vec
Untuk melaksanakan pengelasan ciri nod, kita perlu mengekstrak beberapa maklumat daripada rangkaian dan menghantarnya sebagai input kepada pengelas. Satu contoh ialah menggunakan kaedah vektor nod 2 untuk menukar maklumat yang diekstrak kepada ungkapan vektor supaya setiap nod mempunyai sekurang-kurangnya satu dimensi.
Dengan berjalan sampel secara rawak dari nod permulaan ke nod sasaran, model Node2Vec mempelajari vektor yang mewakili setiap nod. Model nod 2Vec mentakrifkan kebarangkalian peralihan antara nod semasa berjalan rawak.
Kami akan menggunakan perpustakaan node2vec untuk menjana perwakilan terbenam graf dan menggunakan rangkaian saraf untuk pengelasan nod.
# 定义函数:创建基于Cora数据集的嵌入 def create_embeddings(graph): # 初始化node2vec实例,指定相关超参数 n2v = Node2Vec(graph, dimensions=64, walk_length=30, num_walks=200, p=1, q=1, weight_key='attr_weight') # 基于指定参数训练得到嵌入向量表达式 model = n2v.fit(window=10, min_count=1, batch_words=4) # 获得所有图中节点的嵌入向量 embeddings = pd.DataFrame(model.wv.vectors) ids = list(map(str, model.wv.index2word)) # 将原有的特征和id与新获取到的嵌入向量按行合并 lookup_table = nodes.set_index(0).join(embeddings.set_index(embeddings.index)) return np.array(lookup_table.dropna().iloc[:, -64:]), np.array(list(range(1, lookup_table.shape[0] + 1))) # 创建嵌入向量 cora_embeddings, cora_labels = create_embeddings(graph)
Melalui kod di atas, kita boleh mendapatkan ungkapan pembenaman nod 64 dimensi bagi setiap nod.
Latih pengelas
Seterusnya kami akan menentukan beberapa pengelas dan melatihnya pada set data Cora untuk melaksanakan operasi pengelasan nod yang tepat berdasarkan pembenaman.
from sklearn import svm, model_selection, metrics # 使用支持向量机作为示范的分类器 svm_model = svm.SVC(kernel='rbf', C=1, gamma=0.01) # 进行交叉验证和分类训练 scores = model_selection.cross_val_score( svm_model, cora_embeddings, cora_labels, cv=5) print(scores.mean())
Untuk mendapatkan prestasi yang lebih baik, apabila mesin vektor sokongan digunakan sebagai pengelas, kami juga perlu melakukan operasi pelarasan parameter yang berkaitan. Di sini, kaedah pengesahan silang 5 kali ganda digunakan untuk menilai prestasinya.
Memvisualisasikan benam nod
Untuk memahami dengan lebih baik, kita perlu mengurangkan dimensi ekspresi ciri 64 dimensi yang sukar difahami oleh manusia untuk mencapai visualisasi. t-SNE ialah kaedah yang direka khusus untuk mengurangkan kerumitan data berdimensi tinggi, dan kami menggunakannya di sini. Ia menghasilkan graf dua dimensi di mana nod serupa dikelompokkan rapat bersama, dan graf ini dicapai dengan mengeluarkan vektor taburan kebarangkalian yang mengandungi hanya dua elemen.
# 定义函数:可视化Nodes2Vec的结果 def visualize_results(embeddings, labels): # 使用t-SNE对数据进行降维并绘图 tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300) tsne_results = tsne.fit_transform(embeddings) plt.figure(figsize=(10, 5)) plt.scatter(tsne_results[:,0], tsne_results[:,1], c=labels) plt.colorbar() plt.show() # 可视化结果 visualize_results(cora_embeddings, cora_labels)
Vektor benam yang dijana oleh Node2Vec akan dimasukkan ke dalam t-SNE, di mana t-SNE mengurangkan dimensi ekspresi vektor 64 dimensi dan mengeluarkan plot serakan dua dimensi yang boleh kita gambarkan menggunakan matplotlib perpustakaan. Sama ada kebanyakan nod yang berkaitan dikelompokkan dengan ketat boleh disemak dalam antara muka grafik.
Atas ialah kandungan terperinci Bagaimana untuk melaksanakan klasifikasi dan visualisasi nod dalam python berdasarkan Node2Vec. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Penyimpanan Objek Minio: Penyebaran berprestasi tinggi di bawah CentOS System Minio adalah prestasi tinggi, sistem penyimpanan objek yang diedarkan yang dibangunkan berdasarkan bahasa Go, serasi dengan Amazons3. Ia menyokong pelbagai bahasa pelanggan, termasuk Java, Python, JavaScript, dan GO. Artikel ini akan memperkenalkan pemasangan dan keserasian minio pada sistem CentOS. Keserasian versi CentOS Minio telah disahkan pada pelbagai versi CentOS, termasuk tetapi tidak terhad kepada: CentOS7.9: Menyediakan panduan pemasangan lengkap yang meliputi konfigurasi kluster, penyediaan persekitaran, tetapan fail konfigurasi, pembahagian cakera, dan mini

Latihan yang diedarkan Pytorch pada sistem CentOS memerlukan langkah -langkah berikut: Pemasangan Pytorch: Premisnya ialah Python dan PIP dipasang dalam sistem CentOS. Bergantung pada versi CUDA anda, dapatkan arahan pemasangan yang sesuai dari laman web rasmi Pytorch. Untuk latihan CPU sahaja, anda boleh menggunakan arahan berikut: PipinstallToRchTorchVisionTorchaudio Jika anda memerlukan sokongan GPU, pastikan versi CUDA dan CUDNN yang sama dipasang dan gunakan versi pytorch yang sepadan untuk pemasangan. Konfigurasi Alam Sekitar Teragih: Latihan yang diedarkan biasanya memerlukan pelbagai mesin atau mesin berbilang mesin tunggal. Tempat

Apabila memasang pytorch pada sistem CentOS, anda perlu dengan teliti memilih versi yang sesuai dan pertimbangkan faktor utama berikut: 1. Keserasian Persekitaran Sistem: Sistem Operasi: Adalah disyorkan untuk menggunakan CentOS7 atau lebih tinggi. CUDA dan CUDNN: Versi Pytorch dan versi CUDA berkait rapat. Sebagai contoh, Pytorch1.9.0 memerlukan CUDA11.1, manakala Pytorch2.0.1 memerlukan CUDA11.3. Versi CUDNN juga mesti sepadan dengan versi CUDA. Sebelum memilih versi PyTorch, pastikan anda mengesahkan bahawa versi CUDA dan CUDNN yang serasi telah dipasang. Versi Python: Cawangan Rasmi Pytorch

CentOS Memasang Nginx memerlukan mengikuti langkah-langkah berikut: memasang kebergantungan seperti alat pembangunan, pcre-devel, dan openssl-devel. Muat turun Pakej Kod Sumber Nginx, unzip dan menyusun dan memasangnya, dan tentukan laluan pemasangan sebagai/usr/local/nginx. Buat pengguna Nginx dan kumpulan pengguna dan tetapkan kebenaran. Ubah suai fail konfigurasi nginx.conf, dan konfigurasikan port pendengaran dan nama domain/alamat IP. Mulakan perkhidmatan Nginx. Kesalahan biasa perlu diberi perhatian, seperti isu ketergantungan, konflik pelabuhan, dan kesilapan fail konfigurasi. Pengoptimuman prestasi perlu diselaraskan mengikut keadaan tertentu, seperti menghidupkan cache dan menyesuaikan bilangan proses pekerja.
